
Leveraging client-side storage techniques for enhanced use of multiple
consumer cloud storage services on resource-constrained
mobile devices

Hui-Shyong Yeo a, Xiao-Shen Phang b, Hoon-Jae Lee c, Hyotaek Lim c,n

a Department of Ubiquitous IT, Dongseo University, 617-716 Busan, South Korea
b Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia
c Division of Computer and Information Engineering, Dongseo University, 617-716 Busan, South Korea

a r t i c l e i n f o

Article history:
Received 14 August 2013
Received in revised form
27 February 2014
Accepted 1 April 2014
Available online 30 April 2014

Keywords:
Multiple cloud storage
Mobile devices
Erasure coding
Fault-tolerance
Storage techniques

a b s t r a c t

Despite high adoption rate among consumers, cloud storage services still suffer from many functional
limitations and security issues. Recent studies propose utilization of RAID-like techniques in addition to
multiple cloud storage services as an effective solution, but to the best of our knowledge, there is no
research work done on applying this approach to resource-constrained mobile devices. In this paper, we
propose a solution for mobile devices that unifies storage from multiple cloud providers into a
centralized storage pool that is better in terms of availability, capacity, performance, reliability and
security. First, we explore the feasibility of applying various storage technologies to address the
aforementioned issues. Then, we validate our solution in comparisons with single cloud storage by
implementation of a working prototype on mobile device. Our results show that it can improve the usage
of consumer cloud storage at zero monetary cost, while the minimal overheads incurred are actually
compensated by the performance gained.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cloud storage services provide online storage where data is
stored in virtualized “pools” of storage hosted by third parties,
usually spanning large data centers in different geographical
locations. The service can be accessed by users from anywhere,
during anytime and using any device, through an Internet con-
nection. It has become a trend in ubiquitous data access and has
revolutionized the way users access their personal data, by
eliminating the need to keep in one's possession external storage
devices all the time. This has been mainly attributed to the
increasingly desire of users to share content and the expectation
to have continuous access to their data using multiple computing
devices such as smartphones and tablets. It also has become a
viable backup, file sharing and collaboration solution.

Growth in use of smart mobile devices, along with shortages of
hard disk inventory during 2011 together have provided an impetus
for cloud storage adoption among consumers. As media quality
continues to improve, storage poverty on mobile device is becoming
an imminent issue. Fortunately, ubiquitous wireless access to cloud

storage services on mobile devices allows people to rely on cloud
storage as the main repository for their ever growing media
collection. Gartner (2012) predicts consumers will store 36% of
their digital content in the cloud by 2016, compared to a mere 7%
during 2011.

Many consumer cloud storage services are available in the
market. They vary in terms of pricing, features and performance,
as visualized in Table 1. One may notice that every provider offers
very limited free storage capacity while the pricing for paid
subscription is relatively expensive (Naldi and Mastroeni, 2013;
Han, 2011). In addition to functional limitations such as limited
file upload size, lack of media streaming support and slow
performance (Armbrust et al., 2010), there are other non-
performance related issues that are often overlooked by users
such as security breaches (Abu-Libdeh et al., 2010), vendor lock-in
issues (Armbrust et al., 2010; Abu-Libdeh et al., 2010), frequent
service outages (Armbrust et al., 2010), data corruption (Kumar
and Lu, 2010) and privacy concerns (Ion et al., 2011).

In this paper, we study the feasibility of leveraging client-side
efforts to address these limitations. In particular, we propose to
use simple storage techniques and exploit services from multiple
providers to improve the usage model of cloud storage in current
ecosystem. We developed the proof-of-concept prototype of a
middleware application on real hardware devices and evaluated
its performance in real world scenario. Nevertheless, we restrict

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2014.04.006
1084-8045/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: hsyeo@dongseo.ac.kr (H.-S. Yeo),

ms.phang2@gmail.com (X.-S. Phang), hjlee@dongseo.ac.kr (H.-J. Lee),
htlim@dongseo.ac.kr (H. Lim).

Journal of Network and Computer Applications 43 (2014) 142–156

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2014.04.006
http://dx.doi.org/10.1016/j.jnca.2014.04.006
http://dx.doi.org/10.1016/j.jnca.2014.04.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.04.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.04.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.04.006&domain=pdf
mailto:hsyeo@dongseo.ac.kr
mailto:ms.phang2@gmail.com
mailto:hjlee@dongseo.ac.kr
mailto:htlim@dongseo.ac.kr
http://dx.doi.org/10.1016/j.jnca.2014.04.006

the scope of our study on consumer cloud storage services and
mobile devices because several interesting challenges are raised
when applying such computational intensive storage techniques
on mobile device with constrained resources. We demonstrate
through an experimental study that our solution can achieve extra
availability, capacity, reliability, security and performance at zero
monetary cost.

The remaining of this paper is structured as follows. Section 2
outlines current limitations and issues related to consumer cloud
storage services and mobile devices. Section 3 provides the design
and architecture of our proposed solution. In Section 4, we present
the actual prototype system and some implementation considera-
tions. In Section 5, we evaluate the performance alongside with
discussions. Section 6 gives an overview of related work. Finally, in
Section 7 we conclude our paper and discuss on how this research
can be further explored.

2. Background and motivation

In this section, we discuss the inherent limitations of cloud
storage services and how it impacts the user, especially when
accessing cloud storage service on mobile device.

2.1. Functional limitations

Limited storage capacity and expensive pricing. Typically, mobile
devices have limited internal storage capacity, ranging from 16 GB to
32 GB only. Therefore, cloud storage is promising as a great alternative
to extend storage capacity on these devices. However, most cloud
storage services only offer limited free storage capacity (2 GB to 7 GB)
that is unquestionably insufficient. On the other hand, the cost for paid
subscriptions that offer higher storage capacity are relatively expensive
and it may be a burden to casual users. This is because users need to
pay a monthly or annual fee as long as they are subscribed to the
service (pay-per-use model). It reveals that while the entry cost into
cloud storage services is relatively cheap, it is actually terribly
expensive in the long term (Han, 2011; Abu-Libdeh et al., 2010).

Low performance and bandwidth utilization. It is inevitable that
the I/O performance of using cloud storage is slower than using
local storage device, mainly due to the latency and throughput in
accessing the data stored in the cloud via network connection. In
theory, the performance is proportional to the user's network
bandwidth but in reality, the performance is usually bottlenecked
on the provider side. As cloud storage service is generally offered
to a vast number of public users, the available bandwidth of the
data center is shared between multiple users at the same time. To
ensure steady operation and quality of service (QoS) of their
services, some providers perform bandwidth control and throt-
tling1 to allocate limited bandwidth for each user fairly. As a result,

user's network bandwidth is not being fully utilized and may
experience slow performance.

Low energy efficiency. The official mobile application of each
provider only allows one concurrent network operation at one
time. It seriously bottlenecks the entire system, causing slow data
throughput and short traffic bursts, which result in long waiting
time and idle periods (Google, 2012; Alexandre et al., 2011; Qian
et al., 2011), during which a device keeps the radio channel
occupied. This is undesired because low efficiency of radio
resource usage will drain the battery quickly. The energy issue is
not a concern in the desktop environment, but it is particularly
crucial in the context of mobile devices due to the limited battery
capacities.

Limited features. There are others functional limitations such as
limited file upload size and lack of media streaming support. These
features, which are these services are mostly lacking, are key factors
for achieving seamless data access especially on mobile devices.

2.2. Non performance related limitations

Vendor lock-in issue. Depends solely upon a single cloud
provider incurs a great risk of experiencing vendor lock-in (Abu-
Libdeh et al., 2010) when users are seemingly “trapped” in their
use of one particular service provider and it is often prohibitively
expensive for them to switch to another provider, in terms of
monetary, time and bandwidth cost. The longer a user is “trapped”
with that provider, the higher the switching cost because more
data needs to be migrated. This phenomenon is commonly known
as “data inertia”. Furthermore, data migration requires a two-way
operations (download and re-upload), which results in doubling
the initial cost. Hence, users are vulnerable to price hikes or new
pricing terms. Users are also subjects to the possibility of data loss
if the provider goes out of business suddenly.

Frequent service outages. Despite guaranteed high availability
and uptime (99.9%) in Service-Level Agreement (SLA), there are
many cases where public cloud services encountered occasional
service outages2. It may due to human errors, hardware failures or
natural disasters. During such events, depending solely on a single
provider results in the possibility that users are not able to access
their data due to a single point of failure. Outages may result in
severe financial losses or other kind of losses on both the provider
and client.

Security breaches. Many providers encountered security
breaches in the past3. Since most of the providers maintain the
encryption key by themselves, all users' data will be in risk if the
key is compromised. Moreover, the security scheme and its level of
security occupied by the service provider are also not well under-
stood, let alone controllable by the users. In fact, recent security

Table 1
Comparison between several popular consumer cloud storage services available in the market.

Dropbox Google drive Box SkyDrive Sugar sync Amazon cloud Spider oak iCloud Wuala

Free quota 2 GB 5 GB 5 GB 7 GB No 5 GB 2 GB 5 GB 5 GB
Paid quota (GB) 100–500 100–1000 25–50 20–200 60–500 20–1000 100 10–50 20–2000
Monthly cost per GB $0.1 $0.05 $0.4 $0.0416 $0.1 $0.0416 $0.1 $0.167 $0.14
Media streaming on mobile app Yes No No No Yes Yes No Yes Yes
File size limitation No limit 10 GB 250 MB/5 GBn 2 GB No limit 2 GB No limit 25 MB/250 MBn 100 GB
File versioning 30 days 30 days No/25 versionsn 25 days 5 versions No limit No limit No 10 versions

n Available on paid subscriptions only.

1 We observed bandwidth throttling on Dropbox and SkyDrive during our
evaluation.

2 Amazon AWS outages (April 2011, June, October 2012), Dropbox service
disruptions (August, October 2012).

3 Dropbox accounts were publicly accessible for several hours (June 2011),
Dropbox employee's account password was stolen and spam messages had been
send to users (August 2012).

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156 143

breaches have revealed that even tech giants are using inappropri-
ate or insufficient security schemes (Kamp et al., 2012).

Data loss and data corruption. Despite service providers claim-
ing to have used redundancy protection scheme such as RAID, yet
unrecoverable data losses have occurred in the past4. Many users
believe that their provider is liable in case of data loss (Ion et al.,
2011), but in fact most of the providers are not responsible for, nor
take liability for, any data loss, as stated in their terms and service.
Therefore, users are always responsible for backing up their data
into several locations by replication or other similar redundancy
scheme.

Privacy concerns. Cloud storage raises many questions concern-
ing compliance with privacy and security laws as the loss of data
through industrial espionage and theft of personal and commer-
cial intellectual property is the equivalent of terrorism to the
virtual world. A key problem with privacy is regarding the data
ownership because the service provider might use the data in a
way the user never intended. A great example is the existence of
the PRISM surveillance program that allows the government to spy
on users' data directly.

3. System architecture

With the aim to tackle all the issues outlined in Section 2, we
propose an overall architecture design as illustrated in Fig. 1. It
follows the layered design outlined in RAOC (Spillner et al., 2013).
There are three main layers to the architecture: (i) Mini cloud
gateway controller. (ii) Data processing layer. (iii) Data presenta-
tion layer. The controller layer consists of several functions that
will be further discussed in this section, but can be summarized as
parallelization (Section 3.4), load balancing (Section 3.5), caching,
pre-fetching and network awareness (Section 3.8). The data
processing layer is further divided into three internal modules,
which can be pipelined. The first module consists of four modes
(normal, data striping, erasure coding, and replication) and only
single mode can be chosen at a time. Each mode has different
benefits and trade-offs that will be further discussed in Sections
3.2 and 3.3. The second and third internal modules consist of
compression (Section 3.7) and encryption (Section 3.6) module,
which are optional. Finally, the presentation layer consists of
streaming proxy (Section 3.9), version control (Section 3.10),
de-duplication (Section 3.7) and file abstraction (Section 3.1).
The system is designed to be modular so that new module can
be added easily to extend the features such as supporting more
cloud providers and adding new storage techniques. Moreover, our
proposed solution is designed as a portable system that can run on
any compatible device.

3.1. Unified cloud storage access

An ingenious solution to boost one's available cloud storage
capacity is to sign up for multiple free services offered by different
providers. However, another problem arises therefrom as users
face increasing difficulties in finding their files that are scattered
among various locations (clouds). To take advantage of this
solution, we need to provide users with a unified cloud storage
access across multiple providers where they are dealing with a
single storage pool (Fig. 2(a)) and can easily access or organize
their entire files collection (Fig. 2(b)). Additionally, users should
be able to perform simple file manipulation operations such as
Create, Rename, Update and Delete (CRUD) or advanced operations

such as searching, filtering and sorting. Hence, single point of
contact, centralized management and intuitive user interface are
critical factors in designing the architecture of our system.

3.2. Data striping

To bypass the file size limitation imposed by the provider, we
utilize a common storage technique known as data striping, which
stripes a piece of data into smaller chunks so that each chunk can
be uploaded (Fig. 3(a)) without encountering the size limitation.
The smaller chunks can be stored in either the same provider or
different providers using simple Round-Robin scheme. An advan-
tageous side effect of applying data striping and storing smaller
chunks in different providers is the vendor lock-in issue can be
mitigated. The cost of data migration is effectively reduced as the
amount of data stored in each provider is only 1/n, where n is the
total number of cloud storage services being subscribed to. Other
benefits that arise from data striping such as improved overall
bandwidth utilization and load balancing will be further discussed
in Sections 3.4 and 3.5, respectively.

3.3. Replication and erasure coding

Replication is a technique commonly used in years prior to
provide fault-tolerance and extra availability for storage system. It
incurs high storage overheads that are proportional to the level of
redundancy desired. This technique is also applicable to multiple
cloud storage locations but there are additional bandwidth over-
heads. In seeking an alternative solution, recent studies (Ion et al.,
2011; Slamanig and Hanser, 2012; Spillner et al., 2013; Seiger et al.,
2011; Bian and Seker, 2009; Plank et al., 2008; Plank et al., 2009;
Hu et al., 2012; Resch and Plank, 2011; Bessani et al., 2011; Bowers
et al., 2009; Mu et al., 2012; Cachin et al., 2010) propose to
stripe and store data across multiple cloud vendors retaining
data reliability by applying techniques such as erasure coding
(Fig. 3(b)). Erasure coding breaks an object into k equal size
fragments and generates extra n fragments resulting in a total of
m fragments such that the original object can be recovered from
any k fragments. It ensures data reliability at much lower over-
heads (storage cost is increased by a factor of 1/r where r¼k/n) as
compared to replication (Weatherspoon and Kubiatowicz, 2002).
Data loss is only occurred when at least k–n fragments are
permanently lost. Besides, extra security can be achieved by
efficiently dispersing data to several targets using information
dispersal algorithm (IDA) (Rabin, 1989) that is based on secret
sharing (Shamir, 1979). It can provide data integrity and protect
against data corruption. In short, by applying erasure codes to
cloud storage, users are more resilient in the face of disasters,
outage risks and vendor lock-in because it is unlikely that
catastrophic events would happen to all providers at the
same time.

3.4. Parallelization and pipelining

Parallel processing allows computations to be executed simul-
taneously so that performance is improved. It is commonly used in
systems with multi-core processor. Data parallelism allows data to
be divided into multiple chunks so that each chunk is processed
concurrently. Pipelining is a technique that allows a set of opera-
tions to be executed in a time-sliced fashion so that the overall
throughput is increased. Different storage techniques outlined in
this section can be executed in a pipeline fashion. It can signifi-
cantly improve the overall performance (Dongara and Vijaykumar,
2003; Ashokkumar et al., 2010) and avoid idle times, at the cost
of higher CPU utilization. In addition, storage operations can be
pipelined with network operations such as upload and download

4 Microsoft Sidekick and Amazon EC2 service lost unrecoverable customer data
in widely publicized incidents.

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156144

(Mohamed et al., 2013; Rodriguez and Biersack, 2002; Philopoulos
and Maheswaran, 2001) to improve the overall bandwidth utiliza-
tion (Fig. 4), similar to HTTP pipelining technique. Fig. 4 illustrates
the concept where the completion time is much faster than
sequential processing.

To minimize the effect of bandwidth throttling practiced by
some providers, we can leverage parallel upload and download
operation by transmitting different parts to different providers
concurrently or vice versa. This improves the transmission speed

by aggregating bandwidth from different providers and keeps the
user's bandwidth saturated all the time (Mohamed et al., 2013;
Rodriguez and Biersack, 2002; Philopoulos and Maheswaran,
2001). If the provider practices per-connection based throttling
instead of per-account based throttling, we can establish multiple
connections to both the same provider and the different providers
to transmit different parts of the file concurrently (Philopoulos and
Maheswaran, 2001). This improves the effective bandwidth and
bandwidth utilization further.

Fig. 1. Proposed overall system architecture design.

Fig. 2. (a) Aggregating multiple cloud storage services. (b) A single list view of all files in all services.

Fig. 3. (a) Data stripingþparallel upload/download. (b) Erasure codingþparallel upload/download.

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156 145

3.5. Load balancing and automated tiering

Depends on many factors such as network condition and
geographical location, different cloud services can have different
network speed. Therefore, each parallel download/upload opera-
tion usually completes at different times. The effective throughput
is proportional to the slowest link bandwidth. In worst-case
scenario, the “tail time” (Qian et al., 2011) can be significantly
long, which may lead to inefficient bandwidth utilization and high
energy consumption (Google, 2012). In order to reduce this effect,
we perform load balancing by assigning different priorities
(automated tiering) to different providers (Mohamed et al., 2013;
Rodriguez and Biersack, 2002; Philopoulos and Maheswaran,
2001) instead of using simple Round-Robin selection. When
combined with data striping technique, we can load balance based
on different parameters. For example, we can transmit more data
back and forth between client and the provider that has (i) largest
storage capacity (ii) highest link throughput (iii) largest storage
capacity left unused (iv) lowest network delay and response time.
File size is an important factor that can impact the result as
perceived by the user. Normally, high throughput is favorable
because the transfer time will dominate the entire operation. But
in the case of small files, low response time is more favorable
because the operation should complete almost instantly. The
current remaining capacity should also be taken into consideration
as there is no point to keep storing data to the fastest provider
when it is low in capacity.

By automatically tiering different providers, load balancing
technique can also be applied on data processed with erasure
coding. Basically, the higher tiered providers with better perfor-
mance in terms of throughput or storage capacity will store
more erasure coded parts. For example, in a 4þ2 redundancy
scheme (where k¼4, n¼2, m¼6), two parts can be stored in tier-1
provider while the rest are stored in three tier-2 providers and
local cache. In this case, it can tolerate one failure of tier-1 location
or two failures of any of the tier-2 locations, but cannot tolerate
two failures that include the tier-1 location. For the retrieval of
data, only the k fastest providers are selected because k coded
parts are sufficient to reconstruct the original file.

3.6. Encryption

Privacy concerns grow strongly among consumers especially
after the recent disclosure of the PRISM program. Instead of
relying on the security scheme provided by the service provider
that may be inadequate, we employ a simple yet effective solution,
which is to perform client-side encryption before storing the data
in the cloud. Symmetric encryption turns a data from plaintext
into meaningless cipher text using an encryption key only known
to the user. With encryption, users' data are not exposed even if
the service provider experiences a security breach or judicial
subpoena. Client-side encryption also enables users to flexibly
choose between different encryption schemes (full disk encryp-
tion, per-file encryption), encryption algorithms (DES, AES,
Twofish) and key length (128 bits, 256 bits) to adjust the level of
security for different providers.

3.7. Data aware compression and data de-duplication

Data can be reduced in size before transmission through the
network to the cloud servers. It can improve network transmission
speed and achieves bandwidth and storage quota saving. A
common technique is data compression, which involves encoding
the data using fewer bits of storage than the original. However, not
all files can be compressed equally because different files possess
different compressibility characteristics. Some files can be highly
compressed (e.g. text, documents, raw media content) while some
incompressible files (e.g. pdf, docx, jpeg, mp3) do not compress
much (Winzip 2012). It is because the incompressible files are
already in highly compressed state or are very unique in their
nature, such as encrypted files. Besides, different types of file also
yield different compression efficiency when using different com-
pression algorithm (e.g. LZ77, LZW, JPEG). Hence, we can utilize a
data aware compression technique in our system where compres-
sion is applied only on compressible data (Harnik et al., 2013), and
the best algorithm that will yield the highest compression ratio is
chosen automatically. Without this mechanism, simply applying
compression on any file may introduce extra overhead without
significant benefits.

Another data reduction technique is data de-duplication, which
aims to reduce storage consumption by identifying distinct chunks
of data with identical content and removing them. Only a single
copy of the unique chunk is stored along with metadata about how
to reconstruct the original files from the chunks. By performing
source-based inline data de-duplication, data needing to be sent
through the network can be substantially reduced. In addition,
data de-duplication and data compression complement each
other; they can be combined to further reduce the data size.

3.8. Caching, prefetching and network awareness

One of the inherent limitations of cloud storage is Internet
access is required for it to function properly. It is because the data
are stored remotely and are retrieved on demand via network
connection. Due to the unstable nature of wireless network, there
may be occasions when Internet connectivity is disrupted. There-
fore, files can be cached locally to allow offline access during such
occasions. Caching is a mechanism for temporary storing of data
locally, usually to reduce bandwidth usage or perceived lag. A full
cache stores the entire file where a partial cache stores only a
subset of the total data. Partial cache can be combined with
erasure coding mechanism to increase the fault-tolerance at no
extra overhead on the cloud storage side. For example, in a 3þ2
erasure coding scheme (where k¼3, n¼2,m¼5), one coded part is
kept in local cache while four coded parts are stored in different
cloud storage locations. In this case, it can actually tolerate two
cloud servers outage at only 33% storage overhead in both the
cloud storage and the local storage. It also reduces the transmis-
sion time because only 66% data need to be retrieved.

Data access pattern usually possesses spatial locality where it is
likely that data nearby will be referenced in the near future.
Hence, we can intelligently pre-fetch data earlier before it is
needed, and hope that it will be consumed by the user later.

Fig. 4. Illustration of pipelining vs. sequential architecture (not according to scale).

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156146

In addition to reducing response time, this can also avoid sending
short bursts of data over the network frequently, allowing the
network radio to remain in idle state more often.

Network awareness means a device is aware of which type of
network it is currently utilizing (Wi-Fi or mobile network),
whether the Internet is accessible, and the network behavior.
It is extremely beneficial because using mobile Internet such as
3 G or LTE can be terribly expensive. In addition, if the net-
work condition is unstable or lost, network operations may fail
frequently and resulting in bandwidth wastage. This network
awareness mechanism can substantially reduce the expensive
mobile data charges and bandwidth wastage by simply delaying
the non-priority tasks. For example, in an erasure coded file,
uploading all m encoded parts immediately is not crucial. It is
because only k parts must be uploaded first while the extra n parts
can be delayed to a later time. Another example is when encoun-
tering unstable network conditions; the data that has not yet been
written to the cloud is temporary stored in a cache. The upload
process will continue automatically when Internet connection is
returned to normal or when a cheaper network (Wi-Fi) connection
is available.

Yet, heavy caching can consume significant storage space, given
that the internal storage capacity on mobile devices is already
quite limited to begin with. Therefore, caching must be done
intelligently to avoid wasting precious storage space. One method
is to keep only the new and frequently accessed data in the cache,
while periodically performs clean-up on old and inactive data,
similar to the Least Frequently Recently Used (LFRU) policy. An
SQLite database is responsible for keeping track of all files, files
metadata and usage frequency. It is then encrypted and periodi-
cally replicated to each of the cloud storage to allow seamless
switching over to a new device while maintaining all files'
information. Combining these three techniques can provide users
with a smooth and seamless user experience in almost every
use cases.

3.9. Progressive media streaming

Media streaming is a useful feature because users do not need
to wait for the file download to be completed. Instead, users can
start viewing the content immediately. However, only some cloud
storage service providers offer media streaming capability, with a
limited number of supported formats. To overcome this limitation,
we utilize progressive streaming so users can stream from any
provider even though the provider does not actually support
media streaming feature.

3.10. Exploiting file versioning

Most of the cloud storage services include file versioning, an
useful feature where users can restore unintentionally deleted
files, or revert the files to the previous version in case of data
corruption. For free subscription, it is limited to 30 days or 100
revisions only. This feature is interesting because the deleted data
can be easily recovered, but it does not count towards the storage
quota. It is somewhat similar to the “recycle bin” concept in
desktop environment except the data stored inside can be theore-
tically unlimited. Hence, users can exploit this feature to tempor-
ary boost their effective storage space. This can be easily achieved
by temporary deleting some large files to regain some storage
capacity, and then recover those deleted files at a later time. This
feature can be further exploited to achieve an unlimited storage
capacity illusion, by repeating the process indefinitely. To prevent
the files stored in “recycle bin” get deleted forever, it must be
recovered at least once before the expiration window (usually 30
days). This process can be easily done by restoring the file and

immediately delete it again, and then the file will last for another
period of expiration. This process can also be done programmati-
cally by the application and does not require any user intervention.
However, heavy exploitation of this feature maybe considered as
unethical and does not comply with the terms and regulations of
certain service providers.

4. Implementation

In this section, we delve more deeply into the specifics of our
implementation and present the actualization of our proposed
solution, through a prototype implementation on Android mobile
devices, although it should be applicable to other platforms as
well. As resources on a mobile device are rather limited compared
to its desktop counterparts, the performance might be degraded
when performing CPU intensive task. Thus, we must carefully
consider the impact and overhead incurred by our system to
justify the feasibility of deploying it.

4.1. Overall implementation

Our prototype (Fig. 5) implements four popular cloud storage
services according to a survey (Alan 2013), which are Dropbox,
Google Drive, Box and Skydrive. Our prototype included most of
the techniques mentioned in Section 3 except data de-duplication
(Section 3.7), automatic selection of best compression algorithm
(Section 3.7), intelligent pre-fetching (Section 3.8) and automatic
restoration in exploiting file-versioning (Section 3.10), which will
be further explored in our future research work. The current
prototype is able to connect to multiple cloud storages services,
indexing files located in different cloud storage system, and
present it to users in a single list view under the same namespace.
Simple CRUD operations or advanced storage techniques such as
data striping, erasure coding, compression, encryption, parallel
network operations, pipeline data processing and caching are
also possible. As a prototype, the “exploit file versioning” feature
proposed in Section 3.10 is implemented on only one of the cloud
storage provider (Dropbox).

In our prototype, we utilized JigDFS (Bian and Seker, 2009)
library for erasure coding. The other libraries used in our prototype
such as Bouncy Castle cryptography library, Java Zip library, Java
NIO and SQLite library are already included among Java SDK and
Android development tools. To connect to cloud storage service by
different providers, we use Dropbox SDK, Box SDK, Google Drive
SDK and Microsoft Live SDK for Android.

4.2. Android application

Our solution is implemented as a software application that can
run on any compatible device instead of file system due to several
reasons: (i) It is easier to develop a proof-of-concept prototype. (ii)
It is easier to distribute the solution to a vast amount of users
via .apk file in Google Play market, and it is easier for users to
perform the installation. iii) Mounting Filesystem in Userspace
(FUSE) requires root level access, which means users need to
“root” their device and void the manufacturer warranty. (iv) Most
of the official Android ROM does not include FUSE support except
some unofficial third party custom ROM. It means users need to
flash custom ROM or kernel, and that is a relatively difficult
process especially for average non tech-savvy users. Flashing
custom ROM or kernel also possesses high chance of bricking the
device, rendering the device unusable. On the other side, there are
several drawbacks to our approach, which are: (i) It is not mountable
like file system and therefore not capable of full storage virtualiza-
tion, which means data can be accessed only using the application.

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156 147

(ii) Performance may not be as good as file system implementa-
tion. Nevertheless, we believe the advantages outweigh the draw-
backs in most circumstances. For unified cloud storage access, all
files' attributes and metadata are fetched from each of the cloud
storage in parallel using the specific provider's API. Then, they are
combined under a single namespace and finally presented to user
in a single list view (Fig. 5). Additionally, users can perform simple
file manipulation operations on any of the files such as Create,
Rename, Update and Delete (CRUD). Searching, filtering and
sorting can also be performed on all these files even though they
are actually stored in different cloud storage. These metadata are
also cached locally to avoid frequent refresh if no modification has
been made.

4.3. OAuth 2.0 protocol

Our implementation does not require any extra sign up on third
party websites, except for the cloud storage services that a user
wishes to use. The authentication process is performed directly
with each of the cloud storage providers using OAuth 2.0 protocol,
which means our system do not keep track of any user's id and
password. Our system only stores the OAuth 2.0 tokens that can be
revoked at any time. The authorization process is a one-time only

process that only needs to be performed once by users during
installation, as shown in Fig. 6.

4.4. Load balancing implementation

The optimum ratio should be calculated based on parameters
such as effective bandwidth, round-trip time (RTT) and bandwidth
delay product (BDP) of each provider. However, our load balancer
only uses the effective network throughput because the other
parameters (RTT and BDP) cannot be easily obtained by using
vendor specific API. We denote Si…Sn as the effective network
speed for i to nth provider. Each provider has its own download
speed (Sd,i) and upload speed (Su,i).

Si ¼
ðSd;i � f dÞþðSu;i � f uÞ

f dþ f u
Ri ¼

Si
∑n

i S
where Rir1

where fd and fu are the frequency of download and upload,
respectively. Then we find the effective ratio for each provider Ri…n

and use it to load balance across multiple providers. Due to the fact
that network condition is highly unstable and hardly predictable, a
running average of the ratio is also being dynamically updated every
time a network operation is completed, so that it can adapt better to
network conditions or geographical location changes. The ratio

Fig. 5. Screenshots of the prototype implementation on Android device.

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156148

should be more biased toward download bandwidth, as typical users
tend to download more often than upload in normal use cases. They
are updated regularly and being stored in an SQLite database. Since
our method is based on historical performance data, it does not
guarantee the theoretical best performance, but it should provide
reasonably good performance as perceived by users. Another con-
cern is regarding load balancing data processed with data striping
which the upload ratio will become the limiting factor because the
uploaded portion in each provider must be retrieved in full next
time. Most of the providers are having symmetric upstream/down-
stream bandwidth so we can safely neglect this factor.

4.5. Parallelization and pipelining implementation

To achieve high performance, we mainly utilize the strength of
parallelization and pipelining based on the fact that file can be
divided into smaller chunks and each chunk can be processed
independently. Besides improving the processing performance
and network throughput, parallelization can also reduce the cost
of retransmission in case of a network failure or disconnection. It is
because only those chunks which have failed to transmit must be
retransmitted again instead of the whole file.

Due to the asymmetric processing time for each stage in the
pipeline, there may be a lot of data buffer held in the memory at
any given time. However, older Android devices usually have low
memory capacities (512 MB) and limited heap size (64 MB). There-
fore, in our implementation, the output is written into a temp file
before passing it to the next stage in the pipeline. This severely
limits the speedup gained from pipelining so that better optimiza-
tion such as increasing the heap size on newer Android devices
and better scheduling are to be explored in future research. For
this reason, a low chunk size (2 MB) for data striping and erasure
coding is chosen for the prototype implementation.

4.6. Erasure coding and checksum

For erasure coding, we utilize the JigDFS library (Bian and
Seker, 2009), which is the Java implementation of the Jerasure
library (Plank et al., 2008) based on the Cauchy Reed Solomon
algorithm. Study (Plank et al., 2009) shows that the Jerasure
library is superior to other erasure codes libraries, in terms of

speed and efficiency. There are essentially three main operations
in the encoding process, which consist of: (i) Hashing the entire
file for a fingerprint. (ii) Encoding the file to produce kþn chunks.
(iii) Hashing each encoded chunk for a fingerprint. The operations
are similar but in a reversed way for decoding process: (i) Hashing
each retrieved chunk for a fingerprint and compare it with the
fingerprint obtained earlier for integrity checking. (ii) Decoding k
encoded chunks to reconstruct the original file. (iii) Hashing the
reconstructed file for a fingerprint and comparing it with
the fingerprint obtained earlier for integrity checking. The
hashing mechanism provides data integrity checking where
any data tampering or data corruption can be detected if the
newly calculated fingerprint does not match that of the pre-
viously stored fingerprint. However, these hashing processes are
very costly in terms of time and processing power, especially on
mobile devices with sparse resources. Therefore, we utilize
Cyclic Redundancy Check (CRC) as default checksum algorithm
instead of cryptographic hash function (SHA) for better
performance and lower overheads, while sacrificing some level
of data integrity. CRC can protect against data corruption and
unintentional data tampering, which is sufficient in typical
single user cloud storage usage. SHA-1 or SHA-256 is available
and optional.

Unlike typical erasure coding, we do not encode a file as a
whole. Instead, we divide a file into smaller slices and encode each
slice. This approach can avoid reading a large file entirely into
memory, given that the memory and heap size on mobile device is
limited to begin with. For example, we uses a default of 2 MB
chunk size in a 3þ1 erasure coding scheme, where k¼3, n¼1
m¼4. It means the original file is divided into several 6MB slice
(k�2 MB) and the remaining part is equally divided by k, as
shown in Fig. 7. Since sliced encoding will yields many small
encoded chunks (total slices�m encoded chunks), it may cause
extra overheads (HTTP handshaking) during network transmission
when uploading to cloud storage server (Fig. 7). Hence, it is also
rational to merge these chunks into a bigger chunk before
uploading, which we have denoted as a container. For retrieving,
as soon as the first k chunks in the first slice have arrived, they are
passed to the decoding module for decoding, while the k chunks in
the second slice continue to be downloaded in the background.
Each of the decoded blocks is then appended to the previous block

Fig. 6. Screenshots of performing OAuth2 authentication with different providers.

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156 149

to reconstruct the original file. Similarly, to retrieve a striped file,
all related blocks are downloaded in parallel and merged together.

4.7. CPU and network energy consumption

Even though performing CPU intensive operations such as
compression, encoding and encryption on mobile devices may
consume a lot of battery energy, the energy consumed by network
component are often comparable to or higher than the energy
consumed by the CPU (Pathak et al., 2012), especially on mobile
network such as 3 G or LTE. In addition, a slow network operation
drains more energy by keeping the wireless radio in high power
state and incurs long “tail times” (Google, 2012; Alexandre et al.,
2011; Qian et al., 2011). In contrast, high data throughput allows
network operations to complete faster, allowing the device
switches its wireless radio into idle state as quickly as possible.
In idle state, power consumption is approaching zero and is
negligible compared to keeping the wireless radio constantly in
low power or full power state (Google, 2012). In short, it is better
to transmit the data over a short period and allow the radio to
switch into sleep state instead of transmitting the equivalent in
data over a longer period and keeping the radio awake. Conse-
quently, we argue that our solution could result in battery power
savings in most circumstances.

4.8. Progressive streaming implementation

Progressive streaming is implemented with a lightweight local
proxy server on the device itself. It performs downloading/buffer-
ing in the background and then pushes the content to media
player as soon as the data arrives, as depicted in Fig. 8. Our
prototype is currently able to stream from any cloud provider, but
it does not support processed (encrypted or encoded) file.

4.9. Encryption and compression

Symmetric encryption (AES-256) and cryptographic hash function
(SHA-1) are implemented in our prototype. User provides a password
which is then derived into encryption key using Password-Based

Key Derivation Function (PBKDF2) (Kaliski, 2000). For data chunks
processed with data striping or erasure coding, each chunk is treated
as a single file and encrypted independently. Similarly for data
compression using Zip, each file or each chunk is compressed
independently. We believe this is a simpler approach but we are
keen to explore more effective methods in the future research work,
such as interleaved encryption.

5. Performance evaluation

In this section, we present the performance evaluation of our
system implementation which tries to answer three main ques-
tions: (i) What are the advantages in terms of performance, cost
and availability of using multiple providers? (ii) Does the perfor-
mance gain outweigh the overheads? (iii) Does it solve or alleviate
the limitations outlined in Section 2?

We evaluated the system on four Android smartphones from
different generations, launched in year 2010, 2011, 2012 and 2013,
respectively. They consist of a low-end Galaxy S (Single-core
processor, 512 MB RAM), one middle level Galaxy Nexus (Dual-
core processor, 1 GB RAM), one high-end Galaxy S3 (Quad-core
processor, 2 GB RAM) and a latest Galaxy Note 3 (Quad-core
processor, 3 GB RAM). To simulate a real-world environment,
we evaluated our system on two networks: SK-Telecom (SKT)
LTE mobile network and Korea Telecom (KT) residential Internet

Fig. 7. Coded blocks are transmitted directly to/from cloud storage to allow parallel acceleration.

Fig. 8. Illustration of progressive media streaming.

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156150

network via a Wi-Fi connection. Bandwidth benchmark with
nearest server using Ookla speed test service5 during non-peak
hour resulted in an average download/upload bandwidth6 of 37/
34 Mbits/s and 29/23 Mbits/s, respectively. We report the results
of several different performance tests in this section. Each test was
performed five times and the average time consumption is
recorded, unless otherwise specified.

5.1. Comparison between different cloud storage providers and a
combined approach utilizing multiple cloud storage providers

Fig. 9 illustrates the free storage capacity, pricing and perfor-
mance difference when utilizing our prototype system with
different providers, normalized with respect to the highest factor.
We measure the time consumption and calculate the network
throughput for uploading and downloading a 25 MB test file with
each of the different provider and then with multiple providers in
parallel. For parallel operations, we stripe the data into multiple
blocks of 2 MB each and then send them equally via multiple
connections to/from each provider in parallel. From Fig. 9, we
noticed that although SkyDrive offers the largest storage capacity
for free subscription and cheapest pricing for paid subscription
(monthly cost of $0.0416 per GB); the network performance is
comparatively lower than other providers so there is clearly a
trade-off between lower cost and better performance. On the
other hand, Google Drive's paid subscription offers much better
network performance than SkyDrive but is only slightly more
expensive. Finally, Box charges the highest monthly subscription
fee and offers the highest network bandwidth, albeit lower than
the combined bandwidth of our approach.

From the results of our combined approach, it is shown that the
effective storage capacity and network performance are improved
significantly by aggregating resources from multiple cloud storage
services. One major advantage is that the per-connection based
bandwidth throttling can be bypassed by using multiple connec-
tions. This is especially obvious in the case of SkyDrive. With our
approach, we reach a combined bandwidth of 4.2 MB/s for uploads
and 4.3 MB/s for downloads. These peaks occur at this value due to
different limitations on the device and the network itself (802.11n
or LTE). Theoretically, the maximum throughput is expected to be
higher (more than 6 MB/s) on better hardware such as on 802.11ac
devices or better network such as LTE-Advance with carrier
aggregation (CA). With our approach, the effective monthly cost
is also down on average from the most expensive provider. In this
case, the Box pricing of $0.4 per GB can be reduced to $0.1479 per
GB, which is roughly 60% cheaper. Although the combined pricing
($0.1479) is still higher than the other three providers, users can
actually benefit from several advantages discussed in Section 3
(avoiding vendor lock-in, lower migration cost, fault-tolerance and
improved performance) which are not possible when using a
single provider. In addition, these advantages basically come for
free if the said user is only using free cloud storage services. User
gets a total storage capacity of 19 GB without paying a single cent
and it can be further expanded by adding more service providers.

5.2. Performance evaluation of different data processing techniques

To evaluate our prototype implementation, we measure the time
taken to process different storage operations on a 100MB incompres-
sible file retrieved from the Linode7 website. A 2MB block size is
chosen for both data striping and erasure coding with a 3þ1

redundancy scheme (k¼3, n¼1). For compression and encryption,
we use DEFLATE compression algorithm and AES-256, respectively.
The experiments are repeated on the four aforementioned mobile
devices of different specifications and the results are shown in Fig. 10.
The results show that these operations do not cause significant
processing time, and the time consumption decreases dramatically
on newer device. The processing speed is surprisingly fast such that all
operations take less than 10 s to complete on the latest model device,
with an exception on the compression technique. We conclude that
the data processing is not likely to become a bottleneck until wireless
gigabit Internet to become more common.

5.3. Processing performance on mobile devices
from different generations

With the results from previous experiments, we calculate the
processing performance by dividing the file size over the time
consumption. In general, the performance improvement is approach-
ing two times faster vis-a-vis each device from each generation, as
shown in Fig. 11. This improvement does not depend solely on a single
element; it reflects a combination of mobile technology improvements
in terms of processor speed, memory bandwidth and NAND flash
speed. Therefore, it is safe to assume the performance may be
improved subsequently over the coming years, as the performance
of mobile devices continues to improve and as the overheads incurred
by data processing become lower and less significant, which makes
our proposed solution of applying storage techniques on the client-
side more feasible.

5.4. Comparison between sequential processing
and parallel processing

To demonstrate the improvement in performance of parallel and
pipeline processing using a combination of different data processing
methods discussed in Section 3, we measured the time consumption
and compared the data obtained therefrom with results of sequential
processing. The results of sequential processing are basically a
summation of the results collected from previous experiment, where
we assume there is no delay between executions of the processes. We
use the same parameters as previous experiments, i.e. small block size
of 2MB, 3þ1 erasure coding scheme, AES-256 and DEFLATE algorithm.
The results are shown in Fig. 12 (results for Galaxy S3 only). It is shown
that data processing time is reduced significantly thanks to paralleli-
zation and pipelining that allows each chunk of data to be processed
concurrently, which in turn can optimize processor utilization and
improve the execution time. The performance could be further
improved with a better implementation (by processing everything in
memory instead of writing into a temp file first). Nevertheless, the
amount of speed-up is will be limited according to Amdahl's law.

5.5. Evaluation of erasure coding performance by varying
different parameters

The erasure coding performance is influenced by many factors. The
main contributors are the degree of redundancy, the checksum
algorithm and the device's processing power. We evaluate the
performance by measuring the time consumption for encoding and
decoding a 100 MB incompressible file with different parameters. We
uses 2 MB block size and vary the erasure parameters (k and n) and
checksum algorithm for different benchmarks. They are repeated on
three different devices equipped with multi-core processor only (e.g.
Galaxy Nexus, Galaxy S3 and Galaxy Note 3). The results are shown in
Fig. 13. It is shown that the time consumption of performing erasure
coding is surprisingly low even on mobile devices with limited
computation power. By varying redundancy level and the checksum
algorithm (CRC-32 or SHA-1) for data integrity checking, the time

5 〈http://www.speedtest.net/〉.
6 The effective bandwidth may vary according to location, network condition

and device's capability.
7 〈www.linode.com/speedtest〉.

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156 151

http://www.speedtest.net/
http://www.linode.com/speedtest

consumption increase accordingly. It is revealed that the main cause
for the significant amount of processing time is the SHA-1 hashing
mechanism, so our proposal of replacing SHA-1 with CRC-32 and
trading data integrity for speed is effective.

5.6. Evaluation of network performance

To evaluate the network performance and to observe how our
approach can improve the bandwidth utilization, we performed

Fig. 9. Comparison between different cloud storage service providers (performed on Galaxy S3).

Fig. 10. Time consumption of different data processing techniques on four Android devices (100 MB file).

Fig. 11. Performance on different devices.

Fig. 12. Time consumption of sequential vs. pipelining processing (performed on Galaxy S3).

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156152

a series of benchmark of using a single provider and multiple
providers (our approach). The results are shown in Fig. 14. The
benchmarks were run on Galaxy S3 by transferring a 100 MB file
between the cloud storage services and the device. For the parallel
operations, we use a 2 MB block size, a 3þ1 redundancy scheme
and symmetric transfer for each provider out of the four providers
we utilized here. The two parallel operations, denoted as “Parallel
Single” and “Parallel Multi” are slightly different. In “Parallel
Single”, there is only single connection to each provider, so there
are only a maximum of four connections at any given time. In
“Parallel Multi”, there are multiple connections to each provider,
so there are typically more than four connections at any given
time, as a way to bypass the per-connection based bandwidth
throttling imposed by service provider.

Based on the results of these tests as presented in Fig. 14, it is
shown that the overheads incurred by data striping and erasure
coding process are actually remarkably little compared to the
overall time for network operations. We attribute this to the
strength of parallelism and pipelining. The network I/O will almost
always be the limiting factor rather than the storage I/O (at least not
until wireless gigabit Internet is more widespread), hence the time
consumption is dominated by the network operations. Using multi-
ple providers (Parallel Single) is slower than using a single fastest
provider because it needs to tolerate the slowest provider (in this
case SkyDrive) where the time consumption is actually being
averaged down. By establishing multi connections (Parallel Multi)
to each provider, this bottleneck can be avoided. As a result, the
time consumption can be further reduced, resulting in a perfor-
mance faster than any single fastest provider does. It also results in

higher bandwidth utilization and battery energy saving for the
tested device as discussed in Section 2.1. Therefore, the incurred
overheads are actually compensated by the performance gained.

5.7. Dynamic load balancing

We trace the network pattern using Dalvik Debug Monitor Server
(DDMS) tools provided in Android SDK. Fig. 15 represent the general
pattern of bandwidth utilization when performing network opera-
tions back and forth between multiple cloud storage services
simultaneously. Each colored region indicates the bandwidth utiliza-
tion of network connections to a different cloud storage service, as
stated in the figure. We can observe that by using a dynamic ratio
load balancing favoring the faster provider, the overall network
throughput is higher. This ensures that all of the download and
upload operations complete within a nearly similar time frame, and
hence the “tail time” is effectively mitigated. As a result, the wireless
radio of the tested mobile device can switch to idle state earlier,
which could lead to lower battery energy consumption.

5.8. Discussions

A single interface to access all the cloud storages as a centralized
storage is essential to users because of its intuitiveness and simplicity.
It allows agile management of data across multiple services. This also
allows a user to aggregate resources from multiple service providers,
increases the storage capacity by said user at zero cost (for free
subscriptions) or reduces the migration costs (for paid subscription).
Using multiple service providers enables us to apply essential storage

Fig. 13. Erasure coding a 100 MB file with different parameters (k¼3, n¼1, n¼2) and checksum algorithm.

Fig. 14. Time consumption of upload/download operations on Wi-Fi network (100 MB file). (a) Upload (b) download.

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156 153

techniques on the client-side, but it can cause overheads especially on
resource-constrained mobile devices. Nevertheless, today's mobile
devices are equipped with multi-core processor and a large amount of
RAM. By exploiting parallelization and pipeline processing, overheads
are reduced while performance is improved. Our proposed solution is
thus economically viable.

There are still a few limitations which exist and are as yet to be
mitigated via our current solution. Users are required to sign up for
multiple cloud storage services manually. Although this is
a simple and one-time only process, it may appear to be troublesome
for certain people. Otherwise, if users are already using multiple cloud
storage services, only OAuth2 authorization process is required to
start using the system. In our experiment, the process of authorizing
four cloud storage services took less than one minute. Only new files
uploaded via this system can benefit from the techniques applied in
data processing layer. Hence, a conversion tool that will convert the
previously stored and unprocessed files into processed files is to be
explored for by future research work. Users must also aware that the
processed files (either striped or erasure coded) cannot be retrieved
correctly when using the web interface on the official website. This
side effect is actually the intention of an information dispersal
algorithm (IDA) which efficiently hides the data from any single
service provider. There are clearly trade-offs between using different
storage techniques (data striping vs. erasure coding vs. replication)
and users must choose depends on their level of own demand. Since
our solution is not developed as file system, traditional file system
semantics and consistency are not provided. Files can be only access
via this system, or can be access locally after they are stored locally,
similar to typical cloud storage services.

6. Related work

Aggregating multiple cloud storage services is not entirely new
idea as people have been using multiple email accounts for years.

However, a problem arises when user needs to explicitly find their
files as if it were a needle in a haystack. Third party services such
as StorageMadeEasy, Otixo, Primadesk aim to overcome this
problem, although their efforts seem incomplete in doing so
(Geeks, 2013). These services merely provide a single interface to
simplify the management of multiple cloud services, but the
unorganized files are still scattered across different cloud loca-
tions. Furthermore, users are required to sign up with on a
contractual basis to another service provider abiding by its terms
and conditions. These services store user information and author-
ization token, which means they have access to user's data in the
cloud, and this may raise privacy concerns. Moreover, network
connection is routed to their service (similar to proxy), which will
raise other issues like performance bottlenecks, service outages
and man-in-the-middle security concerns. Finally yet importantly,
those services cost money. In short, these services do not solve any
actual problems but rather incur additional costs upon their users.

Therefore, several studies (Ion et al., 2011; Slamanig and
Hanser, 2012; Spillner et al., 2013; Seiger et al., 2011; Bian and
Seker, 2009; Plank et al., 2008; Plank et al., 2009; Hu et al., 2012;
Resch and Plank, 2011; Bessani et al., 2011; Bowers et al., 2009; Mu
et al., 2012; Cachin et al., 2010) proposed relevant approaches to
improve cloud storage services from different aspects, by applying
redundancy techniques on top of multiple cloud services, com-
monly known as cloud-of-clouds (Slamanig and Hanser, 2012) or
the intercloud (Cachin et al., 2010) approach. Redundancy techni-
ques have long been utilized in local and distributed storage
system, but it has just recently caught on with the blooming
growth of cloud storage. The redundant array of inexpensive disk
(RAID) is the most common means typical of this technique.
There are several different RAID levels where RAID-0 is strictly
equal to replication, while RAID-5 is basically erasure coding with
4þ1 scheme. However, each relevant study focused on different
objectives. In terms of cost, RACS (Abu-Libdeh et al., 2010) was the
pioneer research that utilizes erasure coding and has a working

Fig. 15. Parallel downloads without/with load balancing.

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156154

prototype implementation. RACS focuses only on increasing avail-
ability and avoiding vendor lock-in issues by reducing migration
cost. It also relies on a proxy which may become a bottleneck and
single point-of-failure. On the other hand, NCCloud (Hu et al.,
2012) focuses on maintaining fault tolerance while reducing the
repair cost by introducing F-MSR coding scheme, which aims to
achieve cost-effective repair for a permanent single-cloud failure.
Our approach not only aims to lowering the cost by averaging the
subscription prices of multiple providers but also improving the
free cloud storage services involving no costs at all.

There are more relevant research studies that focus on the
security side of cloud storage services. DEPSKY (Bessani et al., 2011)
focuses on confidentiality, integrity and availability (CIA) of informa-
tion stored in the cloud through encryption, encoding and replica-
tion. Similarly, HAIL (Bowers et al., 2009) acts as a distributed
cryptographic system, which allows cloud servers to compute the
proof of availability and integrity of the stored data. JigDFS (Bian and
Seker, 2009) focuses on a file system with strong encryption and a
certain level of plausible deniability. AONT-RS (Resch and Plank,
2011) described a new dispersal algorithm that can achieve high
security with low computational and storage costs. Taking an overall
perspective, RAOC (Spillner et al., 2013) focuses on creating optimal
cloud storage systems by considering non-functional properties.
SecSCIE (Seiger et al., 2011) proposed a system for use within
enterprises where many users connect to a central proxy. μLibCloud
(Mu et al., 2012) is most similar to our approach, but their choice of
cloud providers are mainly targeted at the enterprise level instead of
average household consumers. In our design, we follow RAOC layered
and modular design so that new features can be added easily but we
have proposed additional techniques that have never been applied in
the cloud-of-clouds approach before, such as data de-duplication and
exploitation of file versioning.

Most of all, the aforementioned approaches have used erasure
coding or information dispersion algorithm (IDA) as outlined by
Rabin (1989) as the basis. Unlike existing studies, our works aim to
improve the system from almost every aspect with a focus on
overall performance and minimizing the incurred overheads.
Clearly, our main research target also differs from previous studies
that focus on enterprise or desktop environment where CPU and
network resources are not a concern. Our study focuses on mobile
devices that allow ubiquitous access to cloud storage but are
resources constrained in terms of computing power, network
resources and battery power. In addition, our solution is imple-
mented as software appliance that can be easily distributed and
installed on the device itself instead of requiring dedicated hard-
ware or proxy (Abu-Libdeh et al., 2010; Seiger et al., 2011).

7. Conclusion and future works

Herein we have presented the prototype of a multi cloud storage
middleware application for mobile devices. It allows users to enjoy
better cloud storage services frommultiple providers at zero cost with
only minimal efforts necessary on the client-side. The key insight of
this paper is that those limitations of individual cloud storage can be
easily overcome by applying essential storage techniques on the client-
side. Generally, it has addresses current limitations to cloud storage
services and delivers improved performance in regard to several
aspects of service including speed and energy consumption. It allows
users to take advantage of each service provider's strongest features
while minimizing any weaknesses. Our results show that it is feasible
to be applied even on resource-constrained mobile devices at the cost
of minimal overheads. Our system is available on Google Android
market (Multi Cloud Storage Prototype 〈https://play.google.com/store/
apps/details?id¼com.tcboy.multi.cloud.storage.system&hl¼en〉).
It can be distributed to and installed by public users easily.

In future research, we aim to improve the overall performance
with a better implementation (native code or Renderscript). Other
techniques that have been proposed in Section 3 but that have as
yet to be implemented, such as data de-duplication and data-
aware compression, are planned for the near future. More choices
regarding providers will be added to the cloud gateway layer, and
it will be upgraded to the more powerful REST or SOAP protocol.
We are also interested to look into multiple users scenario and
reducing the repair cost in the case of service outages. Finally, a
more thorough performance analysis on the network and battery
utilization will be performed with ARO tools (Alexandre et al.,
2011; Qian et al., 2011).

Acknowledgments

This work was supported in part by the National Research
Foundation of Korea under Grant 2011-0009349. Thanks are also
due to all reviewers for their comments and recommendations,
which have greatly improved the manuscript.

References

Abu-Libdeh, H, Princehouse, L, Weatherspoon, H. (2010, June). RACS: a case for
cloud storage diversity. In: Proceedings of the first ACM symposium on cloud
computing. ACM; pp. 229–240.

Alan, H. (2013) Five best cloud storage providers [online], available 〈http://lifehacker.
com/five-best-cloud-storage-providers-614393607〉 [accessed 23 November 2013].

Alexandre, G, Subhabrata, S, Oliver, S. (2011) A call for more energy-efficient apps
[online], available 〈http://www.research.att.com/articles/featured_stories/
2011_03/201102_Energy_efficient?fbid=plCYzUNB0e3〉 [accessed 9 December
2012].

Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, et al. A view of cloud
computing. Commun ACM 2010;53(4):50–8.

Ashokkumar S, Karuppasamy K, Srinivasan B, Balasubramanian V. Parallel key
encryption for CBC and interleaved CBC. Int J Comput Appl 2010;2(1):21–5.

Bessani, A, Correia, M, Quaresma, B, André, F, Sousa, P. (2011, April). DepSky:
dependable and secure storage in a cloud-of-clouds. In: Proceedings of the
sixth conference on computer systems. ACM; pp. 31–46.

Bian, J, Seker, R. (2009, March). Jigdfs: a secure distributed file system. In:
Computational intelligence in cyber security, 2009. CICS'09. IEEE symposium
on IEEE; pp. 76–82.

Bowers, KD, Juels, A, Oprea, A. (2009, November). HAIL: a high-availability and
integrity layer for cloud storage. In: Proceedings of the 16th ACM conference on
computer and communications security. ACM; pp. 187–198.

Cachin C, Haas R, Vukolic M. Dependable storage in the intercloud. IBM Res
2010;3783:1–6.

Dongara, P, Vijaykumar, TN. (2003, March). Accelerating private-key cryptography
via multithreading on symmetric multiprocessors. In: Performance analysis of
systems and software, 2003. ISPASS. 2003 IEEE international symposium on.
IEEE; pp. 58–69.

Gartner (2012) Gartner says that consumers will store more than a third of their
digital content in the cloud by 2016 [online], available 〈http://www.gartner.
com/newsroom/id/2060215〉 [accessed 9 December 2012].

Genius Geeks (2013) Manage multiple cloud storage services efficiently with these
tools [online], available 〈http://geniusgeeks.com/manage-multiple-cloud-stora
ge-services-efficiently〉 [accessed 23 March 2013].

Google (2012) Optimizing downloads for efficient network access [online], avail-
able 〈http://developer.android.com/training/efficient-downloads/efficient-net
work-access.html〉 [accessed 9 December 2012].

Han Y. Cloud computing: case studies and total cost of ownership. Inf Technol Libr
2011;30(4):198–206.

Harnik, D, Kat, R, Margalit, O, Sotnikov, D, Traeger, A. (2013, February). To zip or not
to zip: effective resource usage for real-time compression. In: Proceedings of
the 11th USENIX conference on file and storage technologies. USENIX
Association.

Hu, Y, Chen, HC, Lee, PP, Tang, Y. (2012, February). NCCloud: applying network
coding for the storage repair in a cloud-of-clouds. In: Proceedings of the 10th
USENIX conference on file and storage technologies. USENIX Association;
pp. 21–21.

Ion, I, Sachdeva, N, Kumaraguru, P, Čapkun, S. (2011, July). Home is safer than the
cloud!: privacy concerns for consumer cloud storage. In: Proceedings of the
seventh symposium on usable privacy and security. ACM; p. 13.

Kaliski, B. (2000). RFC 2898: PKCS# 5: password-based cryptography specification
version 2.0. IETF, September.

Kamp Poul-Henning, et al. LinkedIn password leak: salt their hide. ACM Queue
2012;10.6:20.

Kumar K, Lu YH. Cloud computing for mobile users: can offloading computation
save energy? Computer 2010;43(4):51–6.

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156 155

http://lifehacker.com/five-best-cloud-storage-providers-614393607
http://lifehacker.com/five-best-cloud-storage-providers-614393607
http://www.research.att.com/articles/featured_stories/2011_03/201102_Energy_efficient?fbid=plCYzUNB0e3
http://www.research.att.com/articles/featured_stories/2011_03/201102_Energy_efficient?fbid=plCYzUNB0e3
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref1
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref1
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref2
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref2
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref3
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref3
http://www.gartner.com/newsroom/id/2060215
http://www.gartner.com/newsroom/id/2060215
http://geniusgeeks.com/manage-multiple-cloud-storage-services-efficiently
http://geniusgeeks.com/manage-multiple-cloud-storage-services-efficiently
http://developer.android.com/training/efficient-downloads/efficient-network-access.html
http://developer.android.com/training/efficient-downloads/efficient-network-access.html
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref4
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref4
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref5
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref5
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref6
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref6

Mohamed N, Al-Jaroodi J, Eid A. A dual-direction technique for fast file downloads
with dynamic load balancing in the cloud. J Netw Comput Appl 2013.

Mu, S, Chen, K, Gao, P, Ye, F, Wu, Y, Zheng, W. (2012, September). mLibCloud:
providing high available and uniform accessing to multiple cloud storages. In:
Grid computing (GRID), 2012 ACM/IEEE 13th international conference on IEEE;
pp. 201–208..

Multi Cloud Storage Prototype, 〈https://play.google.com/store/apps/details?id=com.
tcboy.multi.cloud.storage.system&hl=en〉.

Naldi, M, Mastroeni, L. (2013, April). Cloud storage pricing: a comparison of current
practices. In: Proceedings of the 2013 international workshop on Hot topics in
cloud services. ACM; pp. 27–34.

Pathak, A, Hu, YC, Zhang, M. (2012, April). Where is the energy spent inside my
app? Fine grained energy accounting on smartphones with eprof. In: Proceed-
ings of the seventh ACM European conference on computer systems. ACM;
pp. 29–42.

Philopoulos, S, Maheswaran, M. (2001, August). Experimental study of parallel
downloading schemes for internet mirror sites. In: Thirteenth IASTED interna-
tional conference on parallel and distributed computing systems (PDCS'01);
pp. 44–48.

Plank, JS, Simmerman, S, Schuman, CD. (2008). Jerasure: a library in C/Cþþ
facilitating erasure coding for storage applications—Version 1.2. University of
Tennessee, Tech. Rep. CS-08-627, 23.

Plank JS, Luo J, Schuman CD, Xu L, Wilcox-O'Hearn Z. A performance evaluation and
examination of open-source erasure coding libraries for storage. In: FAST
2009;9:253–65.

Qian, F, Wang, Z, Gerber, A, Mao, Z, Sen, S, Spatscheck, O. (2011, June). Profiling
resource usage for mobile applications: a cross-layer approach. In: Proceedings
of the ninth international conference on mobile systems, applications, and
services. ACM; pp. 321–334.

Rabin MO. Efficient dispersal of information for security, load balancing, and fault
tolerance. J ACM (JACM) 1989;36(2):335–48.

Resch, JK, Plank, JS. (2011, February). AONT-RS: blending security and performance
in dispersed storage systems. In: Proceedings of the ninth USENIX conference
on file and storage technologies. USENIX Association; pp. 14–14.

Rodriguez P, Biersack EW. Dynamic parallel access to replicated content in the
internet. IEEE/ACM Trans Networking (TON) 2002;10(4):455–65.

Seiger, R, Groß, S, Schill, A. (2011, September). SecCSIE: a secure cloud storage
integrator for enterprises. In: Commerce and enterprise computing (CEC), 2011
IEEE 13th conference on IEEE; pp. 252–255.

Winzip (2012) Why don't some files compress very much? [online], available
〈http://kb.winzip.com/kb/?View=entry&EntryID=104〉 [accessed 9 December
2012].

Shamir A. How to share a secret. Commun ACM 1979;22(11):612–3.
Slamanig, D, Hanser, C. (2012, December). On cloud storage and the cloud of clouds

approach. In: Internet technology and secured transactions, 2012 international
conference for IEEE; pp. 649–655.

Spillner J, Müller J, Schill A. Creating optimal cloud storage systems. Future Gener
Comput Syst 2013;29(4):1062–72.

Weatherspoon H, Kubiatowicz JD. Erasure coding vs. replication: a quantitative
comparison. In peer-to-peer systems. Berlin Heidelberg: Springer; 328–37.

H.-S. Yeo et al. / Journal of Network and Computer Applications 43 (2014) 142–156156

http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref7
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref7
http://https://play.google.com/store/apps/details?id=com.tcboy.multi.cloud.storage.system&hl=en
http://https://play.google.com/store/apps/details?id=com.tcboy.multi.cloud.storage.system&hl=en
http://https://play.google.com/store/apps/details?id=com.tcboy.multi.cloud.storage.system&hl=en
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref8
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref8
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref8
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref9
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref9
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref10
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref10
http://kb.winzip.com/kb/?View=entry&EntryID=104
http://kb.winzip.com/kb/?View=entry&EntryID=104
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref11
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref12
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref12
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref13
http://refhub.elsevier.com/S1084-8045(14)00089-7/sbref13

	Leveraging client-side storage techniques for enhanced use of multiple consumer cloud storage services on...
	Introduction
	Background and motivation
	Functional limitations
	Non performance related limitations

	System architecture
	Unified cloud storage access
	Data striping
	Replication and erasure coding
	Parallelization and pipelining
	Load balancing and automated tiering
	Encryption
	Data aware compression and data de-duplication
	Caching, prefetching and network awareness
	Progressive media streaming
	Exploiting file versioning

	Implementation
	Overall implementation
	Android application
	OAuth 2.0 protocol
	Load balancing implementation
	Parallelization and pipelining implementation
	Erasure coding and checksum
	CPU and network energy consumption
	Progressive streaming implementation
	Encryption and compression

	Performance evaluation
	Comparison between different cloud storage providers and a combined approach utilizing multiple cloud storage providers
	Performance evaluation of different data processing techniques
	Processing performance on mobile devices from different generations
	Comparison between sequential processing and parallel processing
	Evaluation of erasure coding performance by varying different parameters
	Evaluation of network performance
	Dynamic load balancing
	Discussions

	Related work
	Conclusion and future works
	Acknowledgments
	References

