
A Project

entitled

combox

by

Siddharth Ravikumar

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Masters of Science Degree in Computer Science

Dr. Robert C. Green II, Advisor

Dr. Michael Ogawa, Dean
College of Graduate Studies

Bowling Green State University

May 2016

Public Domain, No Rights Reserved.

Siddharth Ravikumar has dedicated the work to the public domain by waiving all
of his rights to the work worldwide under copyright law, including all related and
neighboring rights, to the extent allowed by law. You can copy, modify, distribute
and perform the work, even for commercial purposes, all without asking permission.

See https://creativecommons.org/publicdomain/zero/1.0/legalcode for the full le-
gal verbiage.

An Abstract of

combox

by

Siddharth Ravikumar

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the
Masters of Science Degree in Computer Science

Bowling Green State University
May 2016

File storage providers on the Internet have made it trivial for individuals to store

their personal files online. At the same time, there has been revelations about the

existence of a billion dollar surveillance industry[1] that is building and selling tools

to governments and dictatorships to snoop on its own citizens. In a world which

is fast becoming Orwellian, storing personal files on storage provided by file storage

providers is not even an option for some individuals. In the past, there have been

separate efforts to come up with a solution to allow individuals to use storage space

provided by file storage providers in a way that it made it impossible for file storage

providers or “third parties” to access the user’ files. combox is one such effort, it

allows an individual to store their personal files on the storage provided by Google

Drive and Dropbox in such a way that only part of each file (in encrypted form)

is stored in Google Drive/Dropbox. combox is a python package compatible with

GNU/Linux and OS X platforms. This report contains an overview of combox –

what it is, how it was developed and tested; explains how combox is different from

Vollmar’s Combo-Box[2]; reviews projects similar to combox that help computer users

to securely store personal files on storage provided by file storage providers; lastly,

enlists things that can be done to improve combox.

iii

Dedicated to the $EDITOR I use to literally write everything.

Acknowledgments

Dr. Robert C. Green II who gave me an opportunity to work on combox.

v

Contents

Abstract iii

Acknowledgments v

Contents vi

List of Tables ix

List of Figures x

List of Abbreviations xi

Preface xii

1 Introduction 1

1.1 What is combox? . 2

1.2 How is combox different from Combo-Box? 3

1.3 Using combox . 6

1.3.1 Caveats . 6

2 Background and Literature Review 7

2.1 Multi Cloud Storage Prototype . 8

2.2 SkyCDS . 9

2.3 git-annex . 10

vi

3 Architecture and Design 14

3.1 Structure of combox . 14

3.1.1 combox configuration . 16

3.1.2 combox directory monitor . 16

3.1.3 Node directory monitor . 17

3.1.4 combox data store . 19

3.2 combox modules overview . 21

3.3 DRY . 24

3.4 Operating system compatibility . 24

3.5 combox as a python package . 25

4 Testing 27

4.1 Unit testing . 27

4.1.1 Benefits . 28

4.1.2 Caveats . 28

4.2 Manual testing . 29

4.2.1 General setup and notes . 29

4.2.2 Testing on two GNU/Linux machines 30

4.2.2.1 Issues found . 30

4.2.2.2 Demo . 31

4.2.3 Testing on a GNU/Linux and an OS X machine 33

4.2.3.1 Issues found . 33

4.2.3.2 Demo . 34

4.2.4 Testing with a USB stick as a node 35

4.2.4.1 Caveats . 36

4.2.4.2 Demo . 36

4.3 Stress testing . 38

vii

4.3.1 flac dump (27 files - 424.80MiB) 38

4.3.1.1 Differences from previous stress test (2015-11-08) . . 38

4.3.2 20MiB - 90MiB dump (27 files - 1620.00MiB) 39

4.3.2.1 Differences from previous stress test (2015-11-08) . . 39

4.3.3 20MiB - 90MiB dump (99 files - 5940.00MiB) 39

4.3.3.1 Differences from previous stress test (2015-11-08) . . 40

4.3.4 20MiB - 90MiB dump (180 files - 10800.00MiB) 40

4.3.4.1 Differences from previous stress test (2015-11-08) . . 40

4.3.5 Tools used . 41

4.3.6 Observations . 41

4.3.7 Issues found . 43

5 Conclusion and Future Work 45

References 49

A Making combox Python 3 compatible 53

viii

List of Tables

4.1 Stress Testing combox - flac dump (27 files - 424.79MiB) to combox directory 39

4.2 Stress Testing combox - 20MiB - 90MiB dump (27 files - 1620.00MiB) to combox directory 39

4.3 Stress Testing combox - 20MiB - 90MiB dump (99 files - 5940.00MiB) - to combox directory

4.4 Stress Testing combox - 20MiB - 90MiB dump (180 files - 10800.00MiB) to combox directory

ix

List of Figures

1-1 combox overview - Splitting a file in the combox directory and spreading it across N node directories.

1-2 combox overview - Reconstructing a file into the combox directory from the encrypted shards

3-1 High level overview of how file creation works when combox is setup on two computers. 15

4-1 Stress testing combox - Observations - Time taken to process all files in a given file dump. 41

4-2 Stress testing combox - Observations - Avg. time to split and encrypt a file in a given file dump.

4-3 Stress testing combox - Difference between 2015 and 2016 tests - time taken to process all files

4-4 Stress testing combox - Difference between 2015 and 2016 tests - Avg. time to split and encrypt

x

List of Abbreviations

YAML . YAML Ain’t Markup Language

CLI . Command Line Interface

GUI . Graphical User Interface

TUI . Text User Interface

JSON . JavaScript Object Notation

xi

Preface

Faithfully follow the steps below with utmost diligence; after arriving at this page,

always begin reading step 1.

1. Read the abstract? If yes, proceed to step 2; otherwise, go to page iii and read

the abstract.

2. Is there enough time and motivation to read a long report? If so, set N equal

to 1; if not, set N equal to 5.

3. Begin reading chapterN . Do not pay heed to the trite epigraph at the beginning

of the chapter.

4. Set M equal to 1.

5. Start reading section N.M

6. Is section N.M of any interest? If not, go to step 7; otherwise read this section

and then go to step 7.

7. Increase M by one. If section N.M exists, go to step 5; otherwise go to step 8.

8. Increase N by one. If N = 6, go to step 9; if not, go to step 3.

9. Close the report, do something else.

The above procedure is based on Knuth’s procedure for reading his “The Art of

Computer Programming” series[3].

xii

Chapter 1

Introduction

From a security perspective, if

you’re connected, you’re screwed.

Daniel J. Bernstein

Internet companies have made it trivial for computer users to store data/informa-

tion on their servers and at the same time there is a lot of evidence of governments

and other powerful organizations being able to access information/data stored on the

Internet companies’ computers [1]. Also, most companies add a standard clause in

their privacy policy that allow them to disclose information about users or information

stored/created by users to “third parties”:

Law & Order. We may disclose your information to third parties if we

determine that such disclosure is reasonably necessary to (a) comply with

the law; (b) protect any person from death or serious bodily injury; (c)

prevent fraud or abuse of Dropbox or our users; or (d) protect Dropbox’s

property rights. – Dropbox Privacy Policy [4]

In this type of world, it would be good to have a program that would encrypt all

the data/information before storing it on the storage provided by Internet companies.

combox aims to be one such program which not only encrypts but stores only a part

of the encrypted data/information on the storage provided by an Internet company,

1

thus making it non-trivial for “third parties” to access the user’s data/information

in its entirety. Section 1.1 gives a conceptual introduction to combox; Section 1.2

enumerates how combox is different from Vollmar’s Combo-Box; lastly, section 1.3

contains information on how one can start using combox.

1.1 What is combox?

combox allows the user to store all of their files in the “combox directory” and

combox picks each file stored in the combox directory, splits them into N shards,

encrypts each of the N shards and spreads the shards to N node directories. A

“node directory” is the directory of the file storage provider (Dropbox directory is

a node directory). Fig. 1-1, illustrates how a file called strunk-white.pdf is split,

encrypted and spread across N node directories; shards strunk-white.pdf.shard0

to strunk-white.pdf.shardN are encrypted.

combox does not sync encrypted shards stored in the node directories to the

respective file storage providers’ data store. Instead, it depends on the respective file

storage provider’s client program to sync the shards.

combox can be used on all of the user’s computers. For instance, the user can

install combox on their second computer and combox will reconstruct the file from

the encrypted shards stored in the node directories into the combox directory on

their second computer; Fig. 1-2 illustrates this. Here too, combox depends on the

client program of the respective file storage provider to sync shards to/from the file

storage provider’s data store and to/from the respective node directory on the user’s

computer.

As of combox version 0.2.3, combox is compatible on GNU/Linux and OS X, it

supports just two file storage providers – Google Drive and Dropbox.

2

| |

-->| strunk-white.pdf.shard0 |

| | |

___________________ | |_________________________|

| | | node directory 0

| strunk-white.pdf | /

| | | __________________________

|__________________| |\ | |

combox directory || | strunk-white.pdf.shard1 |

||->| |

| |_________________________|

| node directory 1

| .

| .

| .

|

| __________________________

| | |

--->| strunk-white.pdf.shardN |

| |

|_________________________|

node directory N

Figure 1-1: combox overview - Splitting a file in the combox directory and
spreading it across N node directories.

1.2 How is combox different from Combo-Box?

Combo-Box by Wesley Vollmar [2] was the first implementation of the idea of

storing encrypted shards of a file on storage provided different file storage providers

and depending on the file storage provider’s client to sync shards to their respective

data store. Differences between Vollmar’s Combo-Box and combox are enumerated

below:

Platform Combo-Box runs on Microsoft Windows, whereas combox runs on GNU/Linux

and OS X and is not compatible with Microsoft Windows as of version 0.2.3.

3

| |

| strunk-white.pdf.shard0 |

| |\

|_________________________| \ ___________________

node directory 0 \ | |

|->| strunk-white.pdf |

__________________________ |-->| |

| | | ->|__________________|

| strunk-white.pdf.shard1 |-- | combox directory

| | |

|_________________________| |

node directory 1 |

. |

. |

. |

|

__________________________ |

| | |

| strunk-white.pdf.shardN |----

| |

|_________________________|

node directory N

Figure 1-2: combox overview - Reconstructing a file into the combox direc-
tory from the encrypted shards located in the node directories.

File splitting Combo-Box splits a file into shards based on the space available on

each node directory [2], while combox is not yet cognizant about space left on

each node directory and splits the file into N equal shards, where N is equal to

the number of node directories.

User Interface Combo-Box is a graphical application while combox is mostly a

command-line program. combox’s configuration wizard has a graphical inter-

face. The configuration wizard has a command-line interface too for users who

like TUI.

4

Database Combo-Box uses a traditional SQL database with two tables to keep track

of files’ shards, files’ hash, files’ last “sync time” and for “security and stability”

uses stored procedures that retrieve/store information in the database [2].

combox on the other hand uses a key-value data store to track the files stored in

the combox directory using the pickleDB library [5]. The key-value data store

is a JSON file and all access to this data store is done through an instance of

combox.silo.ComboxSilo class 1 which ensures that only one thread can read

from or write to the data store at any time through a lock (threading.Lock).

In the data store, combox keeps track of the hashes of all the files stored in the

combox directory; the data store also contains dictionaries that track number of

shards which have been create/moved/modified/deleted on another computer.

Installation Combo-Box uses the proprietary InstallShield [6] to install the program,

setup shortcuts and registry settings [2].

combox is a python package, it can either be installed through python’s package

manager (pip [7]) with pip install combox or it can be installed from the

source with the standard python setup.py install.

Configuration Combo-Box saves its configuration inside the Combo-Box directory

and this configuration is shared by all computers on which the user chooses

to run Combo-Box, by virtue of this, the file providers’ directories and the

Combo-Box directory must be in the same locations on all the computers.

combox stores its configuration at $HOME/.combox/config.yaml. The config-

uration file is not shared on computers on which the user runs combox. This

makes it possible to keep the combox directory and the directories of the file

storage providers’ (node directories) in different locations on each computer.

1https://git.ricketyspace.net/combox/tree/combox/silo.py?id=fb7fdd218#n29

5

The configuration file is a YAML file and can be directly edited by the user if

they wish to.

1.3 Using combox

Installing and running combox is relatively easy for Unix users:

$ pip install combox

$ combox

For detailed information on installing combox, see

https://ricketyspace.net/combox/setup/.

1.3.1 Caveats

combox is extremely event-driven and depends on filesystem events to do the cor-

rect action when a file is created/modified/moved/deleted, so the user must make sure

to start combox before starting the file storage providers’ client programs that sync

encrypted shards to the respective node directories. On GNU/Linux distributions

this can be automated through the distribution’s start-up system (most GNU/Linux

distributions seem to use systemd [8]).

6

Chapter 2

Background and Literature Review

Books serve to show a man that

those original thoughts of his aren’t

very new after all

Abraham Lincoln

The idea of unifying the storage provided by multiple Internet file storage providers

and storing all the content in an encrypted form is not new. In the past, computer

researchers and programmers have devised different methods to use multiple file stor-

age providers’ storage space. This chapter gives an overview of the work done by Yeo

et al. in unifying the storage provided by Dropbox, Box, Google Drive and Skydrive

on Android devices [9](Section 2.1); SkyCDS, a content delivery service, by Gonzalez

et al., which uses publish/subscribe overlay paradigm and stores the content across

multiple cloud storage providers such that only part of the content (in encrypted

form) is stored on each file storage provider [10](Section 2.2); and, lastly, git-annex,

by Joey Hess [11], that allows one to version control and keep track of large files with

a possibility of encrypting files that are stored in “special remotes” – storage provided

by Internet file storage providers (Section 2.3).

7

2.1 Multi Cloud Storage Prototype

In the paper “Leveraging client-side storage techniques for enhanced use of mul-

tiple consumer cloud storage services on resource-constrained mobile devices”, Yeo

et al. show their Android mobile application, a prototype, which unifies storage pro-

vided by Dropbox, Box, Google Drive and SkyDrive. The application allows the user

to store all their information in a single location on their phone and it uses erasure

coding [12] to split each file into n + k fragments and spreads the encrypted frag-

ments across storage provided by the file storage providers. All basic file operations

– Create, Rename, Update, Delete (CRUD) – are possible. Information about the

files stored in the unified location is stored in a SQLite database. Unlike combox,

which depends the file storage provider’ client to sync file fragments/shards to the file

storage provider’s data store, the Android application developed by Yeo et al. takes

the responsibility to sync file fragments/shards to each file storage provider and uses

the OAuth 2.0 [13] protocol for authorization.

For encrypting file fragments, they use AES-256; the key for encrypting file frag-

ments is derived from the user’s password by using Password-Based Key Derivation

Function (PBKDF2) [14]. For erasure coding they use the JigDFS library [15]. The

Android application is able do “progressive streaming” of media files; this means

that large media files can be streamed in real-time from the from the file storage

providers’ data store; this is an attractive feature in a “resource constrained” device

where storage is expensive.

Yeo et al. propose methods for achieving data de-duplication; file compression

based on file type; intelligent pre-fetching and caching of file fragments and “auto-

matic restoration in exploiting file-versioning”. These features were not implemented

in the prototype Android application and there is possibility of Yeo et al. implement-

ing these features in the future.

8

It becomes apparent that Yeo et al. work is of immense importance. This is

particularly true when we taking into consideration the research done by Yang et al.,

which found that 59% of the users who use “cloud storage service” access the service

through a smart phone and 42.2% users access it for audio/video [16]. The research

by Yang et al. suggests a trend of users’ preference for small hand-held computers

over laptops and desktops.

2.2 SkyCDS

SkyCDS, by Gonzalez et al., is a content delivery system that splits and spreads

the content across multiple file storage providers [10]. According to Gonzalez et

al., the main reason for designing and developing SkyCDS was to prevent content

providers from getting locked into just one file storage provider and to minimize loss

when a file storage provider goes out of business or if there is temporary outage in

the storage service provided by the file storage provider.

In SkyCDS, the content delivery to subscribers of the content is segregated into

two distinct layers – Metadata Flow Layer and the Content Flow Layer. The publisher

of the content largely interacts with the Metadata Flow Layer that controls and keeps

track of what content is published and the subscriber also largely interacts with the

Metadata Flow layer to subscribe to content published in the content delivery system.

The Content Flow Layer is where the content is stored across multiple file storage

providers. The publisher is responsible for publishing the content using the “delivery

workflow” (part of the Content Flow Layer) and the subscriber uses the “retrieve

workflow” to get access to the subscribed content.

When content has to be dispersed to k file storage providers, the content is split

into n chunks, n > k. This file splitting seems to produce 66.7% of redundancy

overhead [10]. This file splitting scheme also looks very similar to erasure coding,

9

but Gonzalez et al. don’t explicitly state that the content splitting scheme is indeed

“erasure coding”. The splitting of content is done by the “delivery workflow” engine

which is invoked when the publisher triggers the action to publish the respective

content to subscribers.

To evaluate the effectiveness of SkyCDS, Gonzalez et al. state that they’ve done

a case study using the data obtained from the European Space Astronomy Center

(ESAC) for the Soil Moisture Ocean Salinity. In this study, a group of organizations,

in two different continents, used SkyCDS to share satellite images with each other.

According to Gonzalez et al. this study attested SkyCDS as a viable option for content

delivery with respective to performance, cost of file storage space and reliability.

2.3 git-annex

git-annex allows one to version controlled large files that are not usually feasible

to version control under git [17]. git-annex checks in the name and other meta-

data about the files in git and stores the actual content under .git/annex directory.

When a file is added to git-annex, a symlink of the file is created in place of the file

and the content of the file itself is stored under the .git/annex directory.

For instance, say there is a file called deb-nicholson-80s.medium.webm that was

downloaded from the Internet to the git-annex directory:

git status

On branch master

Untracked files:

(use "git add <file>..." to include in what will be committed)

deb-nicholson-80s.medium.webm

10

ls -l

total 105708

...

-rw-r--r-- 1 rsd rsd 108196923 May 5 2015 deb-nicholson-80s.medium.webm

...

When this file is added to git-annex with git annex add, the file turns into a

symlink to a file under the .git/annex directory:

git annex add deb-nicholson-80s.medium.webm

add deb-nicholson-80s.medium.webm ok

(recording state in git...)

ls -l

...

lrwxrwxrwx 1 rsd rsd 207 May 5 2015 deb-nicholson-80s.medium.webm

-> ../.git/annex/objects/3j/vG/SHA256E-s108196923--7de9484ee96908268e

21b451eb9805552c32b44da08e70ee861332c87352944f.webm/SHA256E-s10819692

3--7de9484ee96908268e21b451eb9805552c32b44da08e70ee861332c87352944f.w

ebm

git commit -m "Added video/deb-nicholson-80s.medium.webm"

[master efa1775] Added video/deb-nicholson-80s.medium.webm

1 file changed, 1 insertion(+)

create mode 120000 video/deb-nicholson-80s.medium.webm

Now, the file deb-nicholson-80s.medium.webm is checked into git-annex and

the command git annex sync can be issued to sync the repository to other git-annex

repositories. It must be noted here that when the repository is synced, the file con-

tent itself is not transferred to the other git-annex repositories; only the file’s name

11

and its meta-data that is stored in a separate git branch called git-annex are trans-

ferred [18]. In order to create a copy of a given file in another git annex repository,

git annex get /path/to/filename.ext has to done.

git-annex has this feature called “special remotes” [19], that allows one to push

files checked into git-annex to storage provided by file storage providers. At the

time of writing this report, git-annex supports pushing data to the following file

storage services:

• Amazon S3

• Amazon Glacier

• Internet Archive via S3

• Box.com

• Google drive

• Google Cloud Storage

• Mega.co.nz

• SkyDrive

• OwnCloud

• Flickr

• IMAP

• Usenet

• chef-vault

• hubiC

• pCloud

• ipfs

• Ceph

• Blackblaze’s B2

12

All data pushed to file storage provider’s servers can optionally be encrypted using

one’s GPG key. For instance, to encrypt data that is pushed to the Amazon S3 special

remote, the following command is used [20]:

$ git annex initremote cloud type=S3 keyid=2512E3C7

initremote cloud (encryption setup with gpg key C910D9222512E3C7)

(checking bucket) (creating bucket in US) (gpg) ok

$ git annex describe cloud "at Amazon’s US datacenter"

describe cloud ok

where 2512E3C7 is the id of the GPG key to use for encrypting data pushed to

the Amazon S3 special remote. It is also possible to store each file that is pushed to

the remotes as a set of chunks of size N, to do that we do:

$ git annex initremote cloud type=S3 chunk=1MiB keyid=2512E3C7

initremote cloud (encryption setup with gpg key C910D9222512E3C7)

(checking bucket) (creating bucket in US) (gpg) ok

$ git annex describe cloud "at Amazon’s US datacenter"

describe cloud ok

Upon completion, each file that has to be pushed to the Amazon S3 special remote

is divided into 1MiB chunks, each chunk is encrypted using the GPG key 2512E3C7

and the encrypted chunks are finally pushed to the Amazon S3 remote. It must be

noted here that unlike the Multi Cloud Storage Prototype or SkyCDS or combox, in

git-annex when we are using file chunking all the chunks go to the same location –

in this case, the Amazon S3 remote.

13

Chapter 3

Architecture and Design

In general, when modeling

phenomena in science and

engineering, we begin with

simplified, incomplete models. As

we examine things in greater detail,

these simple models become

inadequate and must be replaced by

more refined models.

Structure and Interpretation of

Computer Programs, Section 1.1.5

[21]

3.1 Structure of combox

combox consists of two main components – the combox directory and the node

directories. The combox directory is the place where the user stores all of their files;

the node directories are the directories under which encrypted shards of the files (in

the combox directory) are scattered to. A node directory is the file storage provider’s

directory. For instance, the Dropbox directory and the Google Drive directory are

14

node directories.

When a file, humans.txt, is created in the combox directory, combox splits

humans.txt into N shards, where N is the number of node directories. If there are

two node directories (Dropbox directory and Google Drive directory), then 2 shards

are created. Each shard of the file is then encrypted and the encrypted shards are

spread evenly across the node directories. Now, the Dropbox client and the Google

client will sync the respective shards that was place under their directories to their

respective data store.

humans.txt

co
m

b
o

x
 d

ir
e

ct
o

ry

humans.txt.shard0

dropbox directory

humans.txt.shard1

google drive directory

Computer I

humans.txt.shard0

dropbox directory

humans.txt

co
m

b
o

x
 d

ire
cto

ry

humans.txt.shard1

google drive directory

Computer II

In
te

rn
e

t

combox directory

monitor

node directory monitor

Figure 3-1: High level overview of how file creation works when combox is
setup on two computers.

Now, when the user moves to their second computer, the node clients (Dropbox

client and the Google Drive client) will sync the new encrypted shards to their re-

spective directories. Once the encrypted shards are synced to the node directories,

15

combox will pick the encrypted shards – humans.txt.shard0, humans.txt.shard1 –

decrypt them and reconstruct into humans.txt and place it in the respective location

under the combox directory; Fig. 3-1 illustrates this. The process is similar for file

modification, deletion and rename/move.

3.1.1 combox configuration

The combox configuration wizard triggers automatically when combox finds that

it is not configured. The combox configuration wizard configures the combox direc-

tory; asks the user to point to the location of the node directories; and reads the

key (passphrase) to be used to encrypt file shards that are spread across the node

directories. The combox configuration is written to $HOME/.combox/config.yaml.

This YAML configuration file can be manually edited by the user.

The config_cb 1 function in the combox.configmodule is responsible for carrying

out the combox configuration. Prior to version 0.2.0, the combox configuration was

purely done through the Command Line Interface (CLI). From 0.2.0 on wards, by

default, the combox configuration is done through a graphical interface; it is still

possible to configure combox through the CLI with the --cli switch.

A demo of combox configuration using the graphical interface on GNU/Linux can

be viewed https://ricketyspace.net/combox/combox-config-gui-glued-gnu.webm.

T he same demo of combox configuration using the graphical interface on OS X can be

viewed https://ricketyspace.net/combox/combox-config-gui-glued-osx.webm.

3.1.2 combox directory monitor

combox directory monitor is an instance of combox.events.ComboxDirMonitor 2

monitoring the combox directory for changes. When changes are made to the combox

1https://git.ricketyspace.net/combox/tree/combox/config.py?id=fb7fdd21#n90
2https://git.ricketyspace.net/combox/tree/combox/events.py?id=fb7fdd21#n42

16

https://ricketyspace.net/combox/combox-config-gui-glued-gnu.webm
https://ricketyspace.net/combox/combox-config-gui-glued-osx.webm

directory, the combox directory monitor is responsible for correctly detecting the type

of change and doing the right thing at that instance of time.

When a file is created in the combox directory, the combox directory monitor will

take that file, split it into N (equal to the number of node directories) shards, encrypt

the shards, spread the encrypted shards to the node directories, and finally store the

hash of the file in the local combox data store.

When a file is modified in the combox directory, the combox directory monitor

will take that modified file, split it into N (equal to the number of node directories)

shards, encrypt the shards, spread the encrypted shards to the node directories, and

finally update the hash of the file in the local combox data store.

When a file is deleted in the combox directory, the combox directory monitor will

remove the encrypted shards of the file in the node directories and get rid of the file’s

hash from the local combox data store.

When a file is moved/renamed in the combox directory, the combox directory

monitor will move/rename encrypted shards in all the node directories, remove the

file’s hash from the local combox data store and store the hash of file under its new

name.

3.1.3 Node directory monitor

Node directory monitor is an instance of combox.events.NodeDirMonitor 3 that

monitors a node directory. When changes are made to the node directory, the node

directory monitor is responsible for correctly detecting the type of change and doing

the right thing at that instance of time. Each node directory has a dedicated node

directory monitor. If there are 2 node directories, then combox will instantiate 2 node

directory monitors.

3https://git.ricketyspace.net/combox/tree/combox/events.py?id=fb7fdd21#n352

17

When an encrypted shard is created in the node directory due to a file created

on another computer, the node directory first checks if the respective file’ encrypted

shard(s) has/have arrived in other node directory/directories. If all encrypted shards

have arrived, then the node directory takes all the encrypted shards, decrypts them,

reconstructs the file and puts the file in the combox directory on this computer and

stores the hash of the newly created file in the local combox data store. If all the

encrypted shards have not arrived, then the node directory does not do anything.

It must be observed here that the node directory monitor of the last node directory

which gets the encrypted shard will be the one to perform the file reconstruction and

creation.

When an encrypted shard is modified in the node directory due to a file modified

on another computer, the node directory first checks if the respective file’ modified

encrypted shard(s) has/have arrived in other node directory/directories. If all mod-

ified encrypted shards have arrived, then the node directory takes all the modified

encrypted shards, decrypts them, reconstructs the file and puts the modified version

of the file in the combox directory on this computer and updates the file’s hash in the

local combox data store. If all the modified encrypted shards have not arrived, then

the node directory does not do anything. It must be observed here that the node

directory monitor of the last node directory which gets the modified encrypted shard

will be the one to perform the file reconstruction and will place the modified file in

the combox directory.

When an encrypted shard is deleted in the node directory due to a file deleted

on another computer, the node directory first checks if the respective file’ encrypted

shard(s) has/have been deleted in other node directory/directories. If all encrypted

shards have been deleted from the node directories, then the node directory deletes

the file in the combox directory on this computer and removes its information from

the local combox data store. If all encrypted shards have not been deleted, then

18

the node directory does not do anything. It must be observed here that the node

directory monitor of the last node directory in which the encrypted shard is deleted

will be the one to delete the file from the combox directory.

When an encrypted shard is moved/renamed in the node directory due to a file

moved/renamed on another computer, the node directory first checks if the respec-

tive file’ moved/renamed encrypted shard(s) has/have arrived in other node directo-

ry/directories. If all moved/renamed encrypted shards have arrived, then the node

directory takes all the moved/renamed encrypted shards, decrypts them, reconstructs

the moved/renamed file and puts the moved/renamed file in the combox directory on

this computer and stores the hash under the file’ new name in the local combox data

store. If the all the moved/renamed encrypted shards have not arrived, then the node

directory does not do anything. It must be observed here that the node directory

monitor of the last node directory which gets the moved/renamed encrypted shard

will be the one to perform the file reconstruction and will place the moved/renamed

file in the combox directory.

3.1.4 combox data store

To “keep it simple, stupid”, combox tracks bare minimum information about the

files that are stored in the combox directory, depending on file system events to do

the right thing when changes takes place in the combox directory.

The only information that is stored in the combox data store with regards to

a file in the combox directory is its SHA-512 hash. The SHA-512 hash of a file is

enough information to detect changes in the file. In the data store, there are also

four dictionaries – file_moved, file_deleted, file_created, file_modified –

which track the number of shards of a file that were moved/deleted/created/modified

due the respective file being moved/deleted/created/modified on another computer.

These four dictionaries are primarily used by the NodeDirMonitor to detect remote

19

file movement/deletion/creation/modification and triggering file reconstruction from

the encrypted shards at the right time.

The data store is a JSON file on the disk, stored by default at

$HOME/.combox/silo.db. The combox.silo.ComboxSilo 4 is the sole interface to

read from and write to the data store. The data store is primarily accessed and mod-

ified by the combox directory monitor (ComboxDirMonitor) and the node directory

monitor (NodeDirMonitor) through a shared threading. Lock that ensures that

only one entity 5 can access/modify the database at a time.

Below is an illustration of the structure of the combox data store:

{

"/home/rsd/combox/ipsum.txt": "e3206df2bb2b3091103ab9d...",

"/home/rsd/combox/tk-shot-osx.png": "7fcf1b44c15dd95e0...",

"/home/rsd/combox/thgttg-21st.png": "0040eedfc3eeab546...",

"/home/rsd/combox/lorem.txt": "5851dd7a4870ff165facb71...",

"/home/rsd/combox/the-red-star.jpg": "4b818126d882e552...",

"file_moved": {},

"file_deleted": {},

"file_created": {},

"file_modified": {},

}

The combox.silo.ComboxSilo, which is the sole interface to read from and write

to the database, uses the pickleDB library [5]. The pickleDB is a very basic key-value

store which allows one to store information in the JSON format.

It must be noted that the combox data store on each computer is independent

4https://git.ricketyspace.net/combox/tree/combox/silo.py?id=v0.2.2#n29
5An entity can be the combox directory monitor or one of the node directory monitors

20

and does not communicate or make transactions with the combox data store located

in other computers.

3.2 combox modules overview

combox is spread into modules that have functions and/or classes. Currently,

combox is considerably a small program consisting of the following files:

$ wc -l combox/*.py

144 combox/cbox.py

178 combox/config.py

241 combox/crypto.py

891 combox/events.py

541 combox/file.py

454 combox/gui.py

0 combox/__init__.py

71 combox/log.py

278 combox/silo.py

29 combox/_version.py

2827 total

This section gives an overview of each of the combox modules with extreme brevity.

combox.cbox 6 This module contains run_cb function that starts/initiates com-

box; this function creates an instance threading.Lock for combox data store

access and another instance of threading.Lock which is shared by instances

of combox.events.ComboxDirMonitor and combox.events.NodeDirMonitor;

it initializes an instance combox.events.ComboxDirMonitor that monitors the

6https://git.ricketyspace.net/combox/tree/combox/cbox.py?id=fb7fdd21

21

combox directory and an instance of combox.events.NodeDirMonitor for each

node directory. This modules also houses the main function that parses com-

mandline arguments, starts combox configuration if needed or loads the combox

configuration file to start running combox.

combox.config 7 Accommodates two import functions – config_cb and get_nodedirs.

The config_cb is the combox configuration function that allows the user to con-

figure combox; this function was designed in a such way that it could be used

by both the commandline and graphical interfaces for configuring combox. The

get_nodedirs function returns, as a list, the paths of the node directories; this

function use used in numerous places in other combox modules.

combox.crypto 8 This has functions for encrypting and decrypting data; encrypt-

ing and decrypting shards (encrypt_shards and decrypt_shards); a function

for splitting a file into shards, encrypting those shards and spreading them

across node directories (split_and_encrypt); a function for decrypting the

shards from the node directories, reconstructing the file from the decrypted

shards and putting the file to the combox directory (decrypt_and_glue). Func-

tions split_and_encrypt and decrypt_and_glue are the two functions that

that are extensively used by the combox.events module; all other functions

in this module are pretty much helper functions for split_and_encrypt and

decrypt_and_glue functions and are not used by other modules.

combox.events 9 This module took the most time to write and test and it is the most

complex module in combox at the time of writing this report. It contains just

two classes – ComboxDirMonitor and NodeDirMonitor. The ComboxDirMonitor

inherits the watchdog.events.LoggingEventHandler and is responsible for

7https://git.ricketyspace.net/combox/tree/combox/config.py?id=fb7fdd21
8https://git.ricketyspace.net/combox/tree/combox/crypto.py?id=fb7fdd21
9https://git.ricketyspace.net/combox/tree/combox/events.py?id=fb7fdd21

22

monitoring for changes in the combox directory and doing the right thing when

a change happens in the combox directory. The NodeDirMonitor also inherits

watchdog.events.LoggingEventHandler and similarly responsible for moni-

toring a node directory and doing the right thing when a change happens in the

node directory; subjectively, NodeDirMonitor is slightly more complex than the

ComboxDirMonitor.

combox.file 10 This is the second largest module in combox. It contains utility

functions for reading, writing, moving files/directories, hashing files, splitting a

file into shards, gluing shards into a file, manipulating directories inside combox

and node directories.

combox.gui 11 Contains the ComboxConfigDialog class; it is the graphical interface

for configuring combox. The class uses the Tkinter library [22] for spawning

graphical elements. Other graphical libraries including PyQt [23] were con-

sidered, Tkinter was chosen over others due to compatibility with all Unix,

Unix-like systems and Microsoft Windows and it is part of the standard python

library from python version 3 on wards.

combox.log 12 All the messages to stdout and stderr are sent through the log_i

and log_e functions defined in this module.

combox.silo 13 Contains the ComboxSilo class which is the canonical interface for

combox for managing information about the files in the combox directory. In-

ternally, the ComboxSilo class uses the pickleDB library [5].

combox. version 14 This is private module that contains variables that contain the

10https://git.ricketyspace.net/combox/tree/combox/file.py?id=fb7fdd21
11https://git.ricketyspace.net/combox/tree/combox/gui.py?id=fb7fdd21
12https://git.ricketyspace.net/combox/tree/combox/log.py?id=fb7fdd21
13https://git.ricketyspace.net/combox/tree/combox/silo.py?id=fb7fdd21
14https://git.ricketyspace.net/combox/tree/combox/ version.py?id=fb7fdd21

23

value of the present version and release of combox. The get_version function

in this module returns the full version number; this function used by setup.py.

3.3 DRY

The core functionality of combox is to split, encrypt file shards, spread them

across node directories (Google Drive and Dropbox) and decrypt, glue shards and put

them back to the combox directory when a file is created/modified/deleted/moved in

another computer. The plan was to use external libraries to accomplish things that

fell outside the realm of the “core functionality of combox”. The main reason behind

this decision was to not indulge in trying to solve problems that others have already

solved.

Accordingly, the watchdog [24] library was chosen for file monitoring. This library

is compatible with Unix, Unix-like systems and Microsoft Windows. The pycrypto

library [25] was used for encrypting data. Combox uses AES encryption scheme to

encrypt file shards. The pickleDB [5] library was used to store information about

files in the combox directory.

Looking back, the decision to use external libraries reduced the complexity of

combox, reduced the time to complete the initial working version of combox, and

made it possible to spend more than 3 months just testing and fixing issues in combox.

3.4 Operating system compatibility

combox was developed on a GNU/Linux machine. A conscious effort was made

to write the software in an operating system independent way. The top criteria for

choosing a library to use in combox was that it had to be compatible on all of the

24

three major computing platforms 15.

Prior to the 0.1.0 release, combox was tested on OS X (See chapter 4) and OS

X specific issues that were found were eventually fixed. The initial 0.1.0 release of

combox was compatible with GNU/Linux and OS X.

After the initial release of combox, it was seen if combox would be compatible

with Microsoft Windows out of the box. it was found that:

• Setting up the paraphernalia to run combox was non-trivial [26].

• The unit tests for the combox.file module failed on the Windows Operating

System.

At the time of writing the report, combox is at version 0.2.3 and it is not com-

patible with Microsoft Windows. Comprehensive documentation for setting up the

development environment for combox on Microsoft Windows was written [26] to make

it less cumbersome for anyone who would want to work on making combox compatible

with Microsoft Windows.

3.5 combox as a python package

Before version 0.2.0, the canonical way to install combox was to pull the source

from the git repository with:

git clone git://ricketyspace.net/combox.git

Then, do:

cd combox

Finally install combox with:

15GNU/Linux, OS X and, Microsoft Windows

25

python setup.py install

Python has a package registry called CheeseShop 16. All packages registered at

the CheeseShop can be installed using pip – Python’s platform independent package

management system [7] – with:

pip install packagename

To make it easier for (python) users to install combox on their machine, an effort

was made to make it a python package [27]. From version 0.2.0, combox has been

registered as a python package at the CheeseShop. (Python) Users can now easily

get a copy of combox on their machine with:

pip install combox

All versions of combox that are available through the CheeseShop are digitally

signed using the following GPG key:

pub 4096R/00B252AF 2014-09-08 [expires: 2017-09-07]

Key fingerprint = C174 1162 CEED 5FE8 9954 A4B9 9DF9 7838 00B2 52AF

uid Siddharth Ravikumar (sravik) <sravik@bgsu.edu>

sub 4096R/09CECEDB 2014-09-08 [expires: 2017-09-07]

All versions of combox’s source are also available as a compressed TAR ball and as a

ZIP archive; they can be downloaded from https://ricketyspace.net/combox/releases.html.

16code name for Python Package Index, see https://wiki.python.org/moin/CheeseShop

26

https://ricketyspace.net/combox/releases.html

Chapter 4

Testing

Testing shows the presence, not the

absence of bugs.

Dijkstra[28]

4.1 Unit testing

The nose [29] testing framework was used to write unit tests for the functions

and classes that are part of the combox.config, combox.crypto, combox.events,

combox.file, combox.silo and combox._version modules. Unit tests were not

written for combox.cbox, combox.gui and combox.combox.log modules either be-

cause it did not sense to write one – for instance, the combox.cbox module, which

uses functions and classes defined in other modules which are unit tested – or it was

not clear how to write unit tests for it (the combox.gui module).

It must be noted here that pure Test Driven Development (TDD) was not observed

– most of the time the function/class was written before the its corresponding test

was written.

27

4.1.1 Benefits

While writing unit tests definitely increased the time to write a particular feature,

it made it possible to immediately check if a feature worked as it should for a given

set of use cases or given set of inputs.

Unit tests greatly helped in testing the compatibility of combox on OS X. Before

the v0.1.0 release, combox’s node directory monitor always assumed that a file’s

first shard (shard0) is always available. While this assumption did not create any

problems on GNU/Linux, on OS X this assumption made the node directory monitor

to behave erratically. This issue (bug #4) was immediately found when the unit

tests were run for the first time on OS X. Another instance where unit tests helped

was just before the v0.2.0 release. Major changes, including the introduction of file

locks in the ComboxDirMonitor, were made to the combox.events. When the unit

tests were run OS X, two tests failed, revealing a difference in behavior of watchdog

[24] on GNU/Linux and OS X on file creation 1; without unit tests, there is a high

probability that this bug would never have been found by now.

4.1.2 Caveats

Unit tests are helpful in testing the correctness of a feature for N number of use

cases but it does not necessarily mean the written feature correctly behaves for use

cases that the author of the feature did not consider or did not think about while

writing the respective feature.

Unit tests failed to reveal bugs #5, #6, #7, #10 and #11 2; these bugs were

found when manually testing combox.

1https://git.ricketyspace.net/combox/commit/?id=8c86e7c28738c66c0e04ae7886b44dbcdfc6369exo
2https://git.ricketyspace.net/combox/plain/TODO.org

28

4.2 Manual testing

The unit tests for the combox.events module tested the correctness of the

ComboxDirMonitor and NodeDirMonitor independently. In order to comprehensively

test the correctness of both ComboxDirMonitor and NodeDirMonitor, it was required

to manually test combox running on more than one computer. Several bugs were

found and fixed while doing manual testing.

Three different types of setups were used to manually test combox. The first kind

of setup has two GNU/Linux machines each using combox to sync files between each

other with Dropbox and Google Drive being the nodes. The second kind of setup

has a GNU/Linux machine and a OS X machine each using combox to sync files

between each other with Dropbox and Google Drive being the nodes. The third kind

of setup has a GNU/Linux machine and OS X machine each using combox to sync

files between each other with Dropbox, Google Drive and a USB stick as nodes.

4.2.1 General setup and notes

• On the GNU/Linux machines, the official Dropbox client was used to sync the

Dropbox node directory to Dropbox’ data store. rclone [30] was used to sync

the Google Drive node directory to Google Drive’ data store; at the time of

testing, Google Drive does not have a client program for GNU/Linux which can

sync to Google Drive’s data store.

• On OS X, the official Dropbox client was used to sync the Dropbox node direc-

tory to Dropbox’s data store; the official Google Drive client was used to sync

the Google Drive node directory to Google Driver’ data store.

• Since combox is extremely event-driven, combox must be started before the

Dropbox and Google Drive clients start syncing their respective directories.

29

4.2.2 Testing on two GNU/Linux machines

combox was run on two GNU/Linux machines and a file was alternatively cre-

ated/modified/renamed/deleted on one of the GNU/Linux machine and it was ver-

ified if the respective file was also created/modified/renamed/deleted on the other

GNU/Linux machine. One of the GNU/Linux machines, (lyra), was a virtual ma-

chine running Debian GNU/Linux stable (version 8.x). The other GNU/Linux ma-

chine (grus) was a physical machine running Debian GNU/Linux testing. The node

directories to scatter the files’ shards were the Dropbox directory and Google Drive

directory. The official Dropbox client was used to automatically sync files from the

Dropbox directory to the Dropbox’ data store; rclone [30] was used to sync files from

Google Drive directory to Google Drive’ data store.

4.2.2.1 Issues found

• Some editors, especially on POSIX complaint systems, create a backup version

of the file being edited. combox was detecting this backup file as a “new file”

and it split it into shards, encrypted the shards and scattered the shards across

the node directories. The right thing for combox to do was to ignore these

backup files and do nothing about them. This issue was fixed on 2015-09-29

3. Now the ComboxDirMonitor, on a “file created” or “file modified” event,

returns from the on_created or on_modified callback when it finds that the

file is a backup/temporary file.

• Dropbox client maintains the .dropbox.cache directory under the root of the

Dropbox directory.

– When a file (shard) was created on another computer, the Dropbox client

pulls the new file (shard) to this computer into .dropbox.cache as a tem-

3https://git.ricketyspace.net/combox/plain/TODO.org

30

porary file and then moves the new file (shard) to its respective location

with the appropriate name.

– When a file (shard) was modified on another computer, the Dropbox client

pulls the modified file (shard) to this computer into the .dropbox.cache

as a temporary file; moves the old version of the file (shard) under the

Dropbox directory into the .dropbox.cache; finally moves the updated

copy of the file, stored as a temporary file, into the Dropbox directory to

its respective location with the appropriate name.

– When a file (shard) was deleted on another computer, the Dropbox client

moves the deleted file into the .dropbox.cache directory on this computer.

All of the above behavior of the Dropbox client broke combox. Commits be-

tween 3d714c5 to 6e1133f 4 fixed combox by making it aware of Dropbox’s

client behavior.

4.2.2.2 Demo

A demo of combox being used on two GNU/Linux machines can be viewed at

https://ricketyspace.net/combox/combox-2-gnus.webm. lyra (virtual machine)

and grus (bare-metal) are the two GNU/Linux machines being used for the demo.

Description of what happens in the demo follows:

- (lyra) install combox.

- (lyra) run combox (test mode).

- (lyra) create file walden.pond with content “It must be beautiful there”.

- (lyra) sync Google Drive using rclone.

- (grus) sync Google Drive using rclone.

- (grus) git pull latest copy of combox.

4https://git.ricketyspace.net/combox/log/?qt=range&q=3d714c5..6e1133f

31

https://ricketyspace.net/combox/combox-2-gnus.webm

- (grus) install combox

- (grus) run combox (testing mode).

- (grus) verify that walden.pond was create on this machine.

- (grus) append ’Peaceful too.’ to walden.pond.

- (grus) sync Google Drive using rclone.

- (lyra) sync Google Drive using rclone.

- (lyra) verify that the latest copy of walden.pond is there in the combox directory;

it should contain ’Peaceful too.’ in the last line.

- (lyra) append “I’ve a dream” to walden.pond.

- (lyra) sync Google Drive using rclone.

- (grus) sync Google Drive using rclone.

- (grus) verify that the latest copy of walden.pond is there in the combox directory;

it should contain “I’ve a dream” in the last line.

- (grus) remove walden.pond from combox directory.

- (grus) sync Google Drive using rclone.

- (lyra) sync Google Drive using rclone.

- (lyra) verify that walden.pond is removed from the combox directory.

- (grus) open Dropbox and Google drive accounts from the web browser.

- (lyra) create file manufacturing.consent. with content “Chomsky stuff?”.

- (lyra) sync Google Drive using rclone.

- (grus) sync Google Drive using rclone.

- (grus) verify that manufacturing.consent was created in the combox directory.

- (grus) verify that the shards of manufacturing.consent were created on Drop-

box and Google Drive through the web browser.

32

4.2.3 Testing on a GNU/Linux and an OS X machine

combox was run on a GNU/Linux machine and an OS X machine and a file was

alternatively created/modified/renamed/deleted on one of the machine and it was

verified if the respective file was also created/modified/renamed/deleted on the other

machine. The GNU/Linux machine was a virtual machine (lyra) running Debian

GNU/Linux stable; the OS X machine was on Mavericks (10.9) during the initial

stage of testing, later it was upgraded to Yosemite (10.10). The node directories

to scatter files’ shards were the Dropbox directory and the Google Drive directory.

The official Dropbox client was used to automatically sync files from the Dropbox

directory to the Dropbox’ data store on both the GNU/Linux machine and the OS

X machine; the official Google Drive client was used to automatically sync files from

the Google Drive directory to Google Drive’ data store on OS X and rclone [30] was

used to sync files from the Google Drive directory to Google Drive’s data store on

GNU/Linux.

4.2.3.1 Issues found

• When a file was modified on another computer, on this computer combox as-

sumed that first shard (shard0) will be updated first and also counted on the

existence of the first shard (shard0). It was observed that the order in which the

shards were updated were unpredictable on this computer and if the first shard

(shard0) was stored in the Dropbox directory, it will momentarily disappear

before the most updated shard becomes available in the Dropbox directory;

this broke combox. This issue was fixed on 2015-08-25 5. This issue is not got

to do with the nature of the setup but it is related to the Dropbox’s behavior

elaborated in section 4.2.2.1.

5https://git.ricketyspace.net/combox/commit/?id=d5b52030348d40600b4c9256f76e5183a85fbb17

33

• When the official Google Drive client pulls an updated version of the file from

Google Drive’ data store, instead directly updating the respective file on the

computer, it deletes the older version of the file and creates the latest version of

the file at the respective location in the Google Drive directory; this behavior

of the Google Drive client confused and broke combox. This issue was fixed

2015-09-06 by making combox aware of the official Google Client’s behavior 6.

• When a non-empty directory was move/renamed on another computer, the old

directory was not getting properly deleted on this computer; this was happening

because, sometimes, the files under the directory being renamed were not deleted

when it was time for NodeDirMonitor to rmdir the old directory. This issue

was fixed on 2015-09-12 7.

• It was found that combox.file.rm_path function failed when it was given a

non-existent path to remove; this issue was fixed on 2015-09-12 8.

4.2.3.2 Demo

A demo of combox being used on a GNU/Linux machine and OS X machine can

be viewed at https://ricketyspace.net/combox/combox-gnu-osx.webm

lyra is the GNU/Linux (virtual) machine and dhcp-129-1-66-1 is the OS X

machine that is being used for the demo. The OS X machine is accessed through

VNC[31].

Description of what happens in the demo follows:

- (lyra) create file cat.stevens with content “peace train”.

- (lyra) sync Google Drive using rclone.

6https://git.ricketyspace.net/combox/commit/?id=37385a90f90cb9d4dfd13d9d2e3cbcace8011e9e
7https://git.ricketyspace.net/combox/commit/?id=9d14db03da5d10d5ab0d7cc76b20e7b1ed5523bf
8https://git.ricketyspace.net/combox/commit/?id=422238eb4904de14842221fa09a2b4028801afb1

34

https://ricketyspace.net/combox/combox-gnu-osx.webm

- (dhcp-129-1-66-1) verify that file cat.stevens is created with content “peace

train”.

- (dhcp-129-1-66-1) append string “moonshadow” to file cat.stevens.

- (lyra) sync Google Drive using rclone.

- (lyra) verify that the file cat.stevens was updated (modified); last line must

have the string “moonshadow”.

- (lyra) append string “father and son” to the file cat.stevens.

- (lyra) sync Google Drive using rclone.

- (dhcp-129-1-66-1) verify that the file cat.stevens was updated (modified);

last line must have the string “father and son”.

- (dhcp-129-1-66-1) rename file cat.stevens to yusuf.islam

- (lyra) sync Google Drive using rclone.

- (lyra) verify that the file cat.stevens was renamed to yusuf.islam.

4.2.4 Testing with a USB stick as a node

combox was run on a GNU/Linux machine and an OS X machine and a file

was alternatively created/modified/deleted on one of the machine and it was verified

if the respective file was also create/modified/deleted on the other machine. The

GNU/Linux machine was a physical machine (grus) running Debian GNU/Linux

testing; The OS X machine was on Mavericks (10.9). The node directories to scatter

files’ shards were the Dropbox directory, Google Drive directory and the USB stick

(ZAPHOD, FAT filesystem). The official Dropbox client was used to automatically sync

files from Dropbox directory to Dropbox’ data store on both the GNU/Linux machine

and the OS X machine; the official Google Drive client was used to automatically sync

files from the Google Drive directory to Google Drive’ data store on OS X and rclone

[30] was used to sync files from the Google Drive directory to Google Drive’s data

store on GNU/Linux; the same USB stick (ZAPHOD) was used on both GNU/Linux

35

and Dropbox to store the third shard (shard2) of the files stored in combox directory.

4.2.4.1 Caveats

• When a removable USB disk is used as a node, combox must be turned off before

ejecting/unmounting the USB disk; combox does not expect a node directory

to disappear when it is running, if the USB disk is removed when combox is

running, then combox goes to an undefined state.

• When a file modified on machine A is synced to machine B, combox must be

turned on first before turning on Dropbox and Google Drive clients and the

shard in the USB disk needs to be “touched” for combox to detect that the

file was modified on the remote computer and update the file locally on this

machine.

• File rename/move does not work. To make it work, core functionality of combox

must be re-written.

4.2.4.2 Demo

A demo of combox being used with a USB stick as the third node can be viewed

at https://ricketyspace.net/combox/combox-usb-node-demo.webm

grus is the GNU/Linux machine and dhcp-129-1-66-1 is the OS X machine that

is being used for the demo. ZAPHOD is the FAT32 USB stick used as the third node.

Description of what happens in the demo follows:

- (grus) start combox.

- (grus) create a file called simon.and.garfunkel with content “the boxer”.

- (grus) sync Google Drive using rclone.

- (grus) stop combox.

- (grus) unmount USB stick (ZAPHOD) from grus.

36

https://ricketyspace.net/combox/combox-usb-node-demo.webm

- (dhcp-129-1-66-1) mount USB stick (ZAPHOD) to (dhcp-129-1-66-1).

- (dhcp-129-1-66-1) start Dropbox client.

- (dhcp-129-1-66-1) start Google Drive client.

- (dhcp-129-1-66-1) start combox.

- (dhcp-129-1-66-1) verify that the file simon.and.garfunkel with content “the

boxer” was created.

- (dhcp-129-1-66-1) append string “mrs. robinson” to file simon.and.garfunkel.

- (dhcp-129-1-66-1) stop combox.

- (dhcp-129-1-66-1) stop Google Drive client.

- (dhcp-129-1-66-1) stop Dropbox client.

- (dhcp-129-1-66-1) unmount the USB stick (ZAPHOD) from (dhcp-129-1-66-1).

- (grus) mount the USB stick (ZAPHOD) to (grus).

- (grus) start combox.

- (grus) start Dropbox client.

- (grus) sync Google Drive using rclone.

- (grus) touch simon.and.garfunkel.shard2 in the USB stick (ZAPHOD).

- (grus) verify that the file simon.and.garfunkel is updated; the last line must

contain the string “mrs. robinson”.

- (grus) remove the file simon.and.garfunkel.

- (grus) sync Google Drive using rclone.

- (grus) unmount the USB stick (ZAPHOD) from (grus).

- (grus) stop Dropbox client.

- (dhcp-129-1-66-1) mount the USB stick (ZAPHOD) to (dhcp-129-1-66-1).

- (dhcp-129-1-66-1) start Google Drive client.

- (dhcp-129-1-66-1) start Dropbox client.

- (dhcp-129-1-66-1) start combox.

- (dhcp-129-1-66-1) verify that the file simon.and.garfunkel was deleted.

37

4.3 Stress testing

A large number of files of different sizes were dumped to the combox directory

between an one second interval to see how combox responds to high load. The file

dump size was varied from 424.80MiB (27 files) to 10,800.00MiB (180 files). The

average time taken to split a file and the total time to process all files were calculated

for each dump.

Stress testing was first done on 2015-11-08. In mid November 2015, the

ComboxDirMonitor was drastically modified to make it use the file Lock shared

by the instances of NodeDirMonitor 9. The hypothesis was that this change in

ComboxDirMonitor directly affected the performance of combox and therefore the

results that were got from stress testing on 2015-11-08 would no longer be valid.

Stress testing was again done on 2016-01-16. The results of this stress test are in

sections 4.3.1 to 4.3.4. Section 4.3.5 gives information about the tools used for stress

testing, section 4.3.6 contains the observations and comparisons between this stress

test and the one done on 2015-11-08, and, lastly section 4.3.7 reveals the issues that

were found with combox by virtue of doing the stress tests.

4.3.1 flac dump (27 files - 424.80MiB)

4.3.1.1 Differences from previous stress test (2015-11-08)

• Total time to process all files was faster by 1min3secs.

• Average time to split and encrypt a file reduced by 28.33ms.

9https://git.ricketyspace.net/combox/commit/?id=5aa1ba0c1dcad62931ba27bb66bf115233086d6c

38

field value
delay between a file dump 1s
start time of processing 11:00:54
end time of processing 11:01:38
total time taken to process all files 00:00:44
no. of files 27
total size of all files 445433187.00 bytes (424.79MiB)
avg. file size 16497525.00 bytes (15.73MiB)
avg. time to split and encrypt a file 352.58 ms

Table 4.1: Stress Testing combox - flac dump (27 files - 424.79MiB) to com-
box directory

4.3.2 20MiB - 90MiB dump (27 files - 1620.00MiB)

field value
delay between a file dump 1s
start time of processing 12:26:45
end time of processing 12:29:07
total time taken to process all files 00:02:22
no. of files 27
total size of all files 1698693120.00 bytes (1620.00MiB)
avg. file size 62914560.00 bytes (60.00iB)
avg. time to split and encrypt a file 2670.59ms

Table 4.2: Stress Testing combox - 20MiB - 90MiB dump (27 files -
1620.00MiB) to combox directory

4.3.2.1 Differences from previous stress test (2015-11-08)

• Total time to process all files was slower by 4secs.

• Average time to split and encrypt a file reduced by 25.52ms.

4.3.3 20MiB - 90MiB dump (99 files - 5940.00MiB)

39

field value
delay between a file dump 1s
start time of processing 13:10:16
end time of processing 13:19:26
total time taken to process all files 00:09:10
no. of files 99
total size of all files 6228541440.00 bytes (5940.00MiB)
avg. file size 62914560.00 bytes (60.00MiB)
avg. time to split and encrypt a file 2979.64ms

Table 4.3: Stress Testing combox - 20MiB - 90MiB dump (99 files -
5940.00MiB) - to combox directory

4.3.3.1 Differences from previous stress test (2015-11-08)

• Total time to process all files was faster by 59secs.

• Average time to split and encrypt a file increased by 206.20ms.

4.3.4 20MiB - 90MiB dump (180 files - 10800.00MiB)

field value
delay between a file dump 1s
start time of processing 13:42:06
end time of processing 14:00:10
total time taken to process all files 00:18:04
no. of files 180
total size of all files 11324620800.00 bytes (10800.00MiB)
avg. file size 62914560.00 bytes (60.00MiB)
avg. time to split and encrypt a file 3423.08ms

Table 4.4: Stress Testing combox - 20MiB - 90MiB dump (180 files -
10800.00MiB) to combox directory

4.3.4.1 Differences from previous stress test (2015-11-08)

• Total time to process all files was slower by 1min2secs

40

• Average time to split and encrypt a file increased by 399.87ms.

4.3.5 Tools used

The dump script 10 was used to dump files to the combox directory between one

second intervals. A night of Emacs Lisp indulgence made it possible to quickly slurp

the required data from the combox output and calculate the average time to split and

encrypt a file and the total amount of time taken to process the files for a given dump

11; lastly org-mode was used to document all data gathered during stress testing 12.

4.3.6 Observations

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000

time taken (s)

data processed (MiB)

time to process all files

+

+

+

+
+

Figure 4-1: Stress testing combox - Observations - Time taken to process all
files in a given file dump.

• Fig. 4-1 shows the time it takes combox to process files for a given file dump 13.

10https://git.ricketyspace.net/combox-paper/plain/dumper/dump
11https://git.ricketyspace.net/combox-paper/plain/scripts/dumps.el
12https://git.ricketyspace.net/combox-paper/plain/notes/benchmarks.org
13A “file dump” here means a bunch of files copied to the combox directory between 1 sec intervals.

41

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000 12000

avg time taken (ms)

total size of files processed (MiB)

avg. time to split & encrypt file

+

+

+

++

Figure 4-2: Stress testing combox - Observations - Avg. time to split and
encrypt a file in a given file dump.

As can be observed from the graph, the total time taken to process all the files

tends almost linearly increase with the increase in the size of the file dump 14.

• Fig. 4-2 show the average time it takes combox to split and encrypt a file

for a given file dump. There is a steep increase in the average time from the

424.79MiB dump and the 1620.00MiB dump, after which the average time to

split and encrypt a file seems to almost linearly increase; The main reason for

this is that the average file size for dumps from 1620.00MiB to 10800.00MiB

are the same.

• Fig. 4-3 shows the graphs for the total amount of time taken to process all files

for a given file dump in the 2016-01-16 and 2015-11-8 stress test. The amount

of time needed to process all fills seems to be reduced for the 5940.00MiB file

dump when compared to the 2015 stress test results and it seems to be slightly

higher for the 10800.00MiB file dump when compared to the 2015 stress test.

14The “size of the file dump” is the total size of all files in a given file dump.

42

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000

time taken (s)

data processed (MiB)

time to process all files (2016)

+

+

+

+
+

time to process all files (2015)

×
×

×

×

×

Figure 4-3: Stress testing combox - Difference between 2015 and 2016 tests
- time taken to process all files in a given file dump.

• Similarly, Fig. 4-4 shows the graphs for the average time to split and encrypt for

a given file dump in the 2016-01-16 and the 2015-11-8 stress test. The average

time taken seems to be almost the same for the 424.79MiB and the 1620.00

dump, but for the 5940.00MiB and the 10800.00MiB dump the average time

taken seems to higher for the 2016 stress test when compared to the 2015 stress

test.

4.3.7 Issues found

• Initially when combox was stress tested with huge files, combox would get over-

whelmed leading to the computer running out of memory and the load average

sometimes peaking at 8. At first, it was assumed that there was a bug in com-

box which caused this to happen, but later it was found that watchdog [24] was

generating a large number “file modified” events when a huge file (~500MiB)

was modified. To prevent watchdog from generating a large number “file mod-

43

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000 12000

avg time taken (ms)

total size of files processed (MiB)

avg. time to split & encrypt file (2016)

+

+

+

+

+
avg. time to split & encrypt file (2015)

×

×
×

×

×

Figure 4-4: Stress testing combox - Difference between 2015 and 2016 tests
- Avg. time to split and encrypt a file in a given file dump.

ified” events for a single modification of a huge file, a delay proportional to

the size of the file was created in the on_modified callback methods in both

ComboxDirMonitor and NodeDirMonitor 15, this fixed the issue.

15https://git.ricketyspace.net/combox/commit?id=7ed3c9cbe6e56223b043a23408474f9df08f119e

44

Chapter 5

Conclusion and Future Work

In general, I hope to contribute to a

world where we value skills and

relationships over careers and

money, where we know better than

to trust cops or politicians, and

where we’re passionate about

building and creating things in a

self-motivated and self-directed way.

Moxie Marlinspike

combox is at a stage where it can be used as a tool to use the storage provided by

two file storage providers – Google Drive and Dropbox – such that only part of each

file in the encrypted form is stored on the data store of the file storage providers. This

method of storing files on file storage providers makes it difficult, but not impossible,

for file storage providers or “third parties” to gain access to the user’s personal files.

combox is at version 0.2.3, it is a python package licensed under the GNU Gen-

eral Public License version 3 or later. It is compatible with GNU/Linux and OS

X. The program is considered to be in “alpha” stage and must be used for ex-

perimental use only. It is not recommended to store critical files on storage pro-

vided by file storage providers using combox. Individuals who wish to try combox

45

would want to look at https://ricketyspace.net/combox/setup/ to get the pro-

gram installed on their machines; Individuals who want to hack/learn about combox

would want to look at https://ricketyspace.net/combox/api/. combox’s canon-

ical source repository is at https://git.ricketyspace.net/combox, the repository

is also mirrored at https://bitbucket.org/bgsucodeloverslab/combox/src and

http://rsiddharth.ninth.su/git/cb.git/.

There are a lot of things that can be done to improve combox, and what follows

is a non-exhaustive list of things to do in the future:

• Make combox cognizant about space available on each node directory. At the

moment, combox reads the amount of free space available on each node directory

(file storage provider’s directory) when configuring combox on a computer but

does not use this information to reckon the space left in each node directory. The

major issue here is how to determine what space is available without interacting

with a service provider’s API or asking the end user.

• Re-think combox.events module. This module was written with the assump-

tion that combox will be the only one to make changes to the node directo-

ries. This assumption was found to be not true when manually testing combox

with node clients (Google Drive and Dropbox client that sync files to/from

the respective node directories to/from their respective data stores). Both the

Google Drive and the Dropbox client make modifications to the Google Drive

and Dropbox directory respectively whenever pulling a modified shard from

their data store to the user’s computer, this behavior broke combox and ma-

jor changes were made to the combox.events module to make it understand

the node client’s behavior in the node directory. These changes increased the

complexity of the classes defined in the combox.events. Tt would be great to

re-think this module in such a way that it reduces its complexity.

46

https://ricketyspace.net/combox/setup/
https://ricketyspace.net/combox/api/
https://git.ricketyspace.net/combox
https://bitbucket.org/bgsucodeloverslab/combox/src
http://rsiddharth.ninth.su/git/cb.git/

• Evaluate if more information needs to tracked about each file in the combox

directory. At the moment, combox only keeps track of the SHA-256 hash of

each file stored in the combox directory.

• Support more file storage providers. For this, ideally no code needs to be written

for supporting a new file storage provider, combox must be tested with the new

file storage provider’s directory as a node directory. If the new file storage

provider’s client (that sync’s the shards their data store) makes non-standard

changes to its directory (like the official Dropbox and Google Drive clients

do), then the combox.events.NodeDirMonitor must be accordingly updated

to make combox cognizant about the file storage provider client’s non-standard

behavior.

• Make unit tests more modular. At the moment, there are some unit test func-

tions that test more than one usecase/facet of a function or class. For instance,

the test_CDM test method, part of the the tests.events_test.TestEvents

test class tests the correctness of the combox.events.ComboxDirMonitor for

file creation, deletion, rename and modification; this method would ideally bro-

ken down into four tests methods.

• Make combox Python 3 compatible. The 2to3 program (which is part of the

standard Python library since Python version 2.6) and the six library can be

used to achieve this. See Appendix A for more information on this.

• Support Microsoft Windows. The way to make combox compatible with Win-

dows will be to run unit tests on Windows. The failing tests might give point-

ers to what parts of combox needs to be changed/updated in order for it to be

compatible with Windows. Individuals interested in making combox compatible

withWindows might find https://ricketyspace.net/combox/setup/#windows

47

https://ricketyspace.net/combox/setup/#windows

useful. It contains information about setting up the development environment

for combox on Windows.

48

References

[1] “Wikileaks - spyfiles.” [Online]. Available: https://wikileaks.org/spyfiles/

[2] W. Vollmar, “Combox-box,” Master’s Project, Bowling Green State University,

April 2014.

[3] D. E. Knuth, The Art of Computer Programming, Volume 1 (3rd Ed.): Fun-

damental Algorithms. Redwood City, CA, USA: Addison Wesley Longman

Publishing Co., Inc., 1997.

[4] “Dropbox privacy policy.” [Online]. Available:

https://www.dropbox.com/privacy

[5] “pickledb - lightweight and simple key-value store.” [Online]. Available:

https://pythonhosted.org/pickleDB

[6] “Installshield - proprietary tool for creating package installers for windows.”

[Online]. Available: http://www.installshield.com/

[7] “pip - pypa recommended tool for installing python packages.” [Online].

Available: https://pip.pypa.io/en/stable/

[8] “systemd - system and service manager.” [Online]. Available:

https://www.freedesktop.org/wiki/Software/systemd/

[9] H.-S. Yeo, X.-S. Phang, H.-J. Lee, and H. Lim, “Leveraging client-side

storage techniques for enhanced use of multiple consumer cloud storage

services on resource-constrained mobile devices,” Journal of Network and

49

https://wikileaks.org/spyfiles/
https://www.dropbox.com/privacy
https://pythonhosted.org/pickleDB
http://www.installshield.com/
https://pip.pypa.io/en/stable/
https://www.freedesktop.org/wiki/Software/systemd/

Computer Applications, vol. 43, pp. 142 – 156, 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1084804514000897

[10] J. Gonzalez, J. C. Perez, V. J. Sosa-Sosa, L. M. Sanchez, and B. Bergua, “Skycds:

A resilient content delivery service based on diversified cloud storage,” Simulation

Modelling Practice and Theory, vol. 54, pp. 64 – 85, 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1569190X15000477

[11] “Joey hess.” [Online]. Available: https://joeyh.name

[12] H. Weatherspoon and J. D. Kubiatowicz, Peer-to-Peer Systems: First

International Workshop, IPTPS 2002 Cambridge, MA, USA, March 7–8, 2002

Revised Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, ch.

Erasure Coding Vs. Replication: A Quantitative Comparison, pp. 328–337.

[Online]. Available: http://dx.doi.org/10.1007/3-540-45748-8 31

[13] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749 (Proposed

Standard), Internet Engineering Task Force, Oct. 2012. [Online]. Available:

http://www.ietf.org/rfc/rfc6749.txt

[14] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification Version

2.0,” RFC 2898 (Informational), Internet Engineering Task Force, Sep. 2000.

[Online]. Available: http://www.ietf.org/rfc/rfc2898.txt

[15] J. Bian and R. Seker, “Jigdfs: A secure distributed file system,” in Computational

Intelligence in Cyber Security, 2009. CICS’09. IEEE Symposium on. IEEE,

2009, pp. 76–82.

[16] H.-L. Yang and S.-L. Lin, “User continuance intention to

use cloud storage service,” Computers in Human Behav-

ior, vol. 52, pp. 219 – 232, 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S074756321500446X

50

http://www.sciencedirect.com/science/article/pii/S1084804514000897
http://www.sciencedirect.com/science/article/pii/S1569190X15000477
https://joeyh.name
http://dx.doi.org/10.1007/3-540-45748-8_31
http://www.ietf.org/rfc/rfc6749.txt
http://www.ietf.org/rfc/rfc2898.txt
http://www.sciencedirect.com/science/article/pii/S074756321500446X

[17] “git - the stupid content tracker.” [Online]. Available: https://git-scm.com/

[18] “git-annex - how it works.” [Online]. Available:

https://git-annex.branchable.com/how it works/

[19] “git-annex - special remotes.” [Online]. Available:

https://git-annex.branchable.com/special remotes/

[20] “git-annex - special remote - amazon s3.” [Online]. Available:

https://git-annex.branchable.com/tips/using Amazon S3/

[21] H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation of

Computer Programs, 2nd ed. MIT Press, 1996.

[22] “Tkinter - python interface to tcl/tk.” [Online]. Available:

https://docs.python.org/2/library/tkinter.html

[23] “Pyqt - python binding of the cross-platform gui toolkit qt.” [Online]. Available:

https://riverbankcomputing.com/software/pyqt/intro

[24] “Watchdog - python api library and shell utilities to monitor file system events.”

[Online]. Available: https://pythonhosted.org/watchdog/

[25] “Pycrypto - the python cryptography toolkit.” [Online]. Available:

https://www.dlitz.net/software/pycrypto/

[26] “setup combox on windows.” [Online]. Available:

https://ricketyspace.net/combox/setup#windows

[27] “Python packaging user guide.” [Online]. Available:

https://packaging.python.org/en/latest/

51

https://git-scm.com/
https://git-annex.branchable.com/how_it_works/
https://git-annex.branchable.com/special_remotes/
https://git-annex.branchable.com/tips/using_Amazon_S3/
https://docs.python.org/2/library/tkinter.html
https://riverbankcomputing.com/software/pyqt/intro
https://pythonhosted.org/watchdog/
https://www.dlitz.net/software/pycrypto/
https://ricketyspace.net/combox/setup#windows
https://packaging.python.org/en/latest/

[28] J. Buxton and B. Randell, “Software engineering techniques,” NATO

Science Committee, Tech. Rep. p. 16, 1969. [Online]. Available:

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF

[29] “Nose - a nicer testing for python.” [Online]. Available:

https://nose.readthedocs.org/en/latest/

[30] “rclone - command line program to sync files and directories to and from google

drive.” [Online]. Available: http://rclone.org/

[31] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual network

computing,” Internet Computing, IEEE, vol. 2, no. 1, pp. 33–38, Jan 1998.

52

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
https://nose.readthedocs.org/en/latest/
http://rclone.org/

Appendix A

Making combox Python 3

compatible

Indeed, when you see new 3.x

versions rolling off the line and no

one using them, its hard to shake

the feeling that Python might die in

this transition. How will we ever

make it across the chasm?

Aaron Swartz, March 2012

What follows is the changes that will have to be made to make combox compatible

with Python version 3.x; it was generated by the 2to3 program.

−−− combox/ v e r s i o n . py (o r i g i n a l)

+++ combox/ v e r s i o n . py (r e f a c t o r e d)

@@ −18,8 +18 ,8 @@

along with Combox (see COPYING) . I f not , s e e

<http ://www. gnu . org / l i c e n s e s />.

− v e r s i o n = u”0.2”

− r e l e a s e = u”2”

+ v e r s i o n = ”0.2”

+ r e l e a s e = ”2”

53

de f g e t v e r s i o n () :

−−− combox/ con f i g . py (o r i g i n a l)

+++ combox/ con f i g . py (r e f a c t o r e d)

@@ −84,7 +84 ,7 @@

prompt = ”%s : ” % (prompt)

− r e turn raw input (prompt)

+ return input (prompt)

de f c on f i g cb (c o n f i g d i r = path . j o i n (expanduser (”˜”) , ’ . combox ’) ,

@@ −143 ,7 +143 ,7 @@

i f not path . e x i s t s (c o n f i g d i r) :

Create combox con f i g d i r e c t o r y .

− os . mkdir (c o n f i g d i r , 0700)

+ os . mkdir (c o n f i g d i r , 0o700)

i f not path . e x i s t s (c o n f i g i n f o [’ combox dir ’]) :

Create combox d i r e c t o r y .

@@ −171 ,7 +171 ,7 @@

”””

nodes = []

− f o r node in c on f i g [’ nodes in fo ’] . i t e r v a l u e s () :

+ f o r node in c on f i g [’ nodes in fo ’] . va lue s () :

node path = path . abspath (node [’ path ’])

nodes . append (node path)

−−− combox/ crypto . py (o r i g i n a l)

+++ combox/ crypto . py (r e f a c t o r e d)

@@ −178 ,7 +178 ,7 @@

r e l p a th = r e l a t i v e p a t h (fpath , c on f i g)

no . o f shards = no . o f nodes .

− SHARDS = len (c on f i g [’ nodes in fo ’] . keys ())

+ SHARDS = len (l i s t (c on f i g [’ nodes in fo ’] . keys ()))

f = path . j o i n (c on f i g [’ combox dir ’] , r e l p a t h)

54

−−− combox/ events . py (o r i g i n a l)

+++ combox/ events . py (r e f a c t o r e d)

@@ −135 ,7 +135 ,7 @@

Remove in fo rmat ion about f i l e s that were de l e t ed .

f p a t h f i l t e r = lambda x : x not in s e l f . s i l o . noded i c t s ()

− f pa ths = f i l t e r (f p a t h f i l t e r , s e l f . s i l o . keys ())

+ fpaths = l i s t (f i l t e r (f p a t h f i l t e r , l i s t (s e l f . s i l o . keys ())))

f o r fpath in fpaths :

i f not path . e x i s t s (fpath) :

@@ −336 ,7 +336 ,7 @@

event ; we ’ re t r a ck ing t h i s behaviour and i gno r i ng

the ’ f i l e modif ied ’ event .

#

− i f (s e l f . j u s t c r e a t e d . has key (event . s r c pa th) and

+ i f (event . s r c pa th in s e l f . j u s t c r e a t e d and

s e l f . j u s t c r e a t e d [event . s r c pa th] and

plat form . system () == ’ Linux ’) :

s e l f . j u s t c r e a t e d [event . s r c pa th] = Fal se

@@ −476 ,7 +476 ,7 @@

de l e t ed .

Remove in fo rmat ion about f i l e s that were de l e t ed .

f p a t h f i l t e r = lambda x : x not in s e l f . s i l o . noded i c t s ()

− f pa ths = f i l t e r (f p a t h f i l t e r , s e l f . s i l o . keys ())

+ fpaths = l i s t (f i l t e r (f p a t h f i l t e r , l i s t (s e l f . s i l o . keys ())))

f o r fpath in fpaths :

del num = 0

@@ −522 ,7 +522 ,7 @@

e l s e :

f i l e s c r e a t e d [f i l e c b p a t h] += 1

− f o r f cb path , crt num in f i l e s c r e a t e d . i tems () :

+ f o r f cb path , crt num in l i s t (f i l e s c r e a t e d . i tems ()) :

i f crt num == s e l f . num nodes :

l o g i (”%s was c reated remotely . Creat ing i t l o c a l l y now . . . ” %

f cb pa th)

@@ −663 ,7 +663 ,7 @@

e l s e :

55

t ry :

os . renames (s r c cb path , de s t cb path)

− except OSError , e :

+ except OSError as e :

l o g e (” Jeez , f a i l e d to rename path . %r ” % e)

s e l f . s i l o . node rem (s i l o n od e d i c t , s r c cb pa th)

@@ −859 ,7 +859 ,7 @@

track ing t h i s behaviour and i gno r i ng the ’ f i l e modif ied ’

event .

#

− i f (s e l f . j u s t c r e a t e d . has key (event . s r c pa th) and

+ i f (event . s r c pa th in s e l f . j u s t c r e a t e d and

s e l f . j u s t c r e a t e d [event . s r c pa th] and

plat form . system () == ’ Linux ’) :

s e l f . j u s t c r e a t e d [event . s r c pa th] = Fal se

−−− combox/ f i l e . py (o r i g i n a l)

+++ combox/ f i l e . py (r e f a c t o r e d)

@@ −58,7 +58 ,7 @@

i f d i r e c t o r y i s None :

err msg = ” i n v a l i d path %s” % p

− r a i s e ValueError , err msg

+ r a i s e ValueError (err msg)

re turn p . p a r t i t i o n (d i r e c t o r y) [2]

@@ −192 ,7 +192 ,7 @@

”””

try :

os . mkdir (d i r e c t o r y)

− except OSError , e :

+ except OSError as e :

l o g e (” Error when t ry ing to make d i r e c t o r y %s” % d i r e c t o r y)

@@ −227 ,7 +227 ,7 @@

e l i f path . i s d i r (fpath) :

pu rge d i r (fpath)

os . rmdir (fpath)

− except OSError , e :

56

+ except OSError as e :

l o g e (” Error when t ry ing to remove path %s” % fpath)

@@ −253 ,7 +253 ,7 @@

de s t d i r p a th = path . j o i n (node , d e s t r e l p a t h)

t ry :

os . renames (s r c d i r pa th , d e s t d i r p a th)

− except OSError , e :

+ except OSError as e :

l o g e (” Error when t ry ing to rename %s −> %s” % (s r c d i r pa th , d e s t d i r p a th))

@@ −284 ,7 +284 ,7 @@

shard = shard g lob [0]

t ry :

os . remove (shard)

− except OSError , e :

+ except OSError as e :

l o g e (” Error when t ry ing to remove shard %s” % shard)

@@ −325 ,7 +325 ,7 @@

shard no)

t ry :

os . renames (s r c shard , de s t sha rd)

− except OSError , e :

+ except OSError as e :

l o g e (” Error when t ry ing to rename shard %s −> %s” % (src shard , de s t sha rd))

−−− combox/ gui . py (o r i g i n a l)

+++ combox/ gui . py (r e f a c t o r e d)

@@ −20 ,12 +20 ,12 @@

import os

−import tkF i l eD ia l og

+import t k i n t e r . f i l e d i a l o g

from os import path

57

from os . path import expanduser

−from Tkinter import ∗

+from tk i n t e r import ∗

from combox . c on f i g import c on f i g cb

@@ −165 ,7 +165 ,7 @@

. . Formatted s t r i n g : https : // docs . python . org /2/ l i b r a r y / s tdtypes . html#s t r i ng−f o rmatt ing

”””

− pr in t type (args) , a rgs

+ pr in t (type (args) , a rgs)

s e l f . s t a tu s ba r . c on f i g (t ex t=format % args)

s e l f . s t a tu s ba r . upda t e i d l e t a s k s ()

@@ −284 ,14 +284 ,14 @@

return Fal se

va l i d a t e node paths

− f o r i in xrange (l en (s e l f . n ode pa th en t r i e s)) :

+ f o r i in range (l en (s e l f . n ode pa th en t r i e s)) :

i f not s e l f . n ode pa th en t r i e s [i] . get () :

s e l f . s t a t u s b a r s e t (”%s %d” , ” g ive the path f o r node ” , i)

s e l f . n ode pa th en t r i e s [i] . f o c u s s e t ()

r e turn Fal se

va l i d a t e node s i z e s

− f o r i in xrange (l en (s e l f . n o d e s i z e e n t r i e s)) :

+ f o r i in range (l en (s e l f . n o d e s i z e e n t r i e s)) :

i f not s e l f . n o d e s i z e e n t r i e s [i] . get () :

s e l f . s t a t u s b a r s e t (”%s %d” , ” g ive the s i z e o f node ” , i)

s e l f . n o d e s i z e e n t r i e s [i] . f o c u s s e t ()

@@ −323 ,13 +323 ,13 @@

c o n f i g i n f o = [combox name , combox dir , ’ ’ , no nodes]

get i n f o about nodes .

− f o r i in xrange (l en (s e l f . n ode pa th en t r i e s)) :

+ f o r i in range (l en (s e l f . n ode pa th en t r i e s)) :

c o n f i g i n f o . append (” node %d” % i)

c o n f i g i n f o . append (s e l f . n ode pa th en t r i e s [i] . get ())

58

c o n f i g i n f o . append (s e l f . n o d e s i z e e n t r i e s [i] . get ())

c o n f i g i n f o i t e r = i t e r (c o n f i g i n f o)

− de f i npu t = lambda (x) : next (c o n f i g i n f o i t e r)

+ de f i npu t = lambda x : next (c o n f i g i n f o i t e r)

d e f pa s s = lambda : passp

c on f i g cb (c o n f i g d i r=s e l f . c o n f i g d i r ,

@@ −367 ,7 +367 ,7 @@

entry . d e l e t e (0 , ’ end ’)

spawn d i a l o g to choose d i r e c t o r y .

− d i r pa th = tkF i l eD ia l og . a s kd i r e c t o r y ()

+ d i r pa th = tk i n t e r . f i l e d i a l o g . a s kd i r e c t o r y ()

entry . i n s e r t (0 , d i r pa th)

@@ −376 ,7 +376 ,7 @@

”””

− f o r i in xrange (l en (s e l f . n ode pa th l abe l s)) :

+ f o r i in range (l en (s e l f . n ode pa th l abe l s)) :

s e l f . n ode pa th l abe l s [i] . de s t roy ()

s e l f . n ode pa th en t r i e s [i] . de s t roy ()

s e l f . n o d e s i z e l a b e l s [i] . de s t roy ()

@@ −416 ,7 +416 ,7 @@

in format ion ” be f o r e ; get r i d o f ’em .

s e l f . c l e a r n o d e i n f o f i e l d s ()

− f o r i in xrange (no nodes) :

+ f o r i in range (no nodes) :

node path s t r = ’ node %d path ’ % i

n o d e s i z e s t r = ’ node %d s i z e (in mega bytes) ’ % i

−−− combox/ s i l o . py (o r i g i n a l)

+++ combox/ s i l o . py (r e f a c t o r e d)

@@ −109 ,7 +109 ,7 @@

ins t ead o f PickleDB

s e l f . r e l oad ()

with s e l f . l o ck :

59

− r e turn s e l f . db . db . keys ()

+ return l i s t (s e l f . db . db . keys ())

de f remove (s e l f , f i l e p) :

@@ −128 ,7 +128 ,7 @@

s e l f . r e l oad ()

with s e l f . l o ck :

r e turn s e l f . db . rem(f i l e p)

− except KeyError , e :

+ except KeyError as e :

means ‘ f i l e p ’ not pre sent in db .

re turn Fal se

@@ −209 ,7 +209 ,7 @@

try :

num = s e l f . db . dget (type , f i l e)

num += 1

− except KeyError , e :

+ except KeyError as e :

I don ’ t th ink t h i s i s the r i g h t way to do t h i s . : |

#

I f we are here i t means f i l e i s not a l r eady there ,

@@ −252 ,7 +252 ,7 @@

with s e l f . l o ck :

t ry :

r e turn s e l f . db . dget (type , f i l e)

− except KeyError , e :

+ except KeyError as e :

f i l e i n f o not the re under type d i c t .

r e turn None

@@ −272 ,7 +272 ,7 @@

with s e l f . l o ck :

t ry :

r e turn s e l f . db . dpop (type , f i l e)

− except KeyError , e :

+ except KeyError as e :

means f i l e ’ s i n f o was a l r eady removed .

do nothing

pass

60

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Preface
	Introduction
	What is combox?
	How is combox different from Combo-Box?
	Using combox
	Caveats

	Background and Literature Review
	Multi Cloud Storage Prototype
	SkyCDS
	git-annex

	Architecture and Design
	Structure of combox
	combox configuration
	combox directory monitor
	Node directory monitor
	combox data store

	combox modules overview
	DRY
	Operating system compatibility
	combox as a python package

	Testing
	Unit testing
	Benefits
	Caveats

	Manual testing
	General setup and notes
	Testing on two GNU/Linux machines
	Issues found
	Demo

	Testing on a GNU/Linux and an OS X machine
	Issues found
	Demo

	Testing with a USB stick as a node
	Caveats
	Demo

	Stress testing
	flac dump (27 files - 424.80MiB)
	Differences from previous stress test (2015-11-08)

	20MiB - 90MiB dump (27 files - 1620.00MiB)
	Differences from previous stress test (2015-11-08)

	20MiB - 90MiB dump (99 files - 5940.00MiB)
	Differences from previous stress test (2015-11-08)

	20MiB - 90MiB dump (180 files - 10800.00MiB)
	Differences from previous stress test (2015-11-08)

	Tools used
	Observations
	Issues found

	Conclusion and Future Work
	References
	Making combox Python 3 compatible

