
A Project

entitled

combox

by

Siddharth Ravikumar

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Masters of Science Degree in Computer Science

Dr. Robert C. Green II, Committee Chair

Dr. XX, Committee Member

Dr. XX, Committee Member

Dr. Michael Ogawa, Dean
College of Graduate Studies

Bowling Green State University

May 2016

Public Domain, No Rights Reserved.

Siddharth Ravikumar has dedicated the work to the public domain by waiving all
of his rights to the work worldwide under copyright law, including all related and
neighboring rights, to the extent allowed by law. You can copy, modify, distribute
and perform the work, even for commercial purposes, all without asking permission.

See https://creativecommons.org/publicdomain/zero/1.0/legalcode for the full le-
gal verbiage.

An Abstract of

combox

by

Siddharth Ravikumar

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the
Masters of Science Degree in Computer Science

Bowling Green State University
May 2016

File storage providers on the Internet have made it non-trivial for individuals to

store personal files on the file storage provider’s computers. After Mr. Snowden dis-

closed information about the National Security Agency’ (NSA) surveillance programs

that allowed the NSA to access information stored on file storage provider’ computers,

online file storage became a non-solution for storing personal files for everyone who

detested the possibility of somebody else being able to access their personal files. In

the past, there have been separate efforts to come with a solution to allow individ-

uals to use storage space provided by file storage providers in a way that it made it

impossible for file storage providers and to access the files. combox is one such effort.

It allows an individual to store personal files in the “combox directory” on all her

computers (running GNU/Linux or OS X) and the combox program takes the files,

splits and encrypts them and spreads them across file storage providers’ directories.

Therefore, when an individual uses storage space provided by file storage providers

through combox, each file storage provider gets only a part of the file in an encrypted

form.

iii

Dedicated to the $EDITOR I use to literally write everything.

Acknowledgments

Dr. Robert C. Green II who gave me an opportunity to work on combox.

v

Contents

Abstract iii

Acknowledgments v

Contents vi

List of Tables ix

List of Figures x

List of Abbreviations xi

Preface xii

1 Introduction 1

2 Background 2

3 Literature Review 3

4 Structure and Design 4

4.1 Structure of combox . 5

4.1.1 combox configuration . 5

4.1.2 combox directory monitor . 5

4.1.3 Node directory monitor . 5

4.1.4 Database structure . 5

vi

4.2 combox modules overview . 5

4.3 Language choice . 8

4.4 DRY . 9

4.5 Operating system compatibility . 10

4.6 combox as a python package . 10

4.7 With the benefit of hindsight . 12

5 Testing 14

5.1 Unit testing . 14

5.1.1 Benefits . 15

5.1.2 Caveats . 15

5.2 Manual testing . 16

5.2.1 General setup and notes . 16

5.2.2 Testing on two GNU/Linux machines 17

5.2.2.1 Issues found . 17

5.2.2.2 Demo . 18

5.2.3 Testing on a GNU/Linux and an OS X machine 20

5.2.3.1 Issues found . 20

5.2.3.2 Demo . 21

5.2.4 Testing with a USB stick as a node 22

5.2.4.1 Caveats . 23

5.2.4.2 Demo . 23

5.3 Stress testing . 25

5.3.1 flac dump (27 files - 424.798190MiB) 26

5.3.1.1 Differences from previous stress test (2015-11-08) . . 26

5.3.2 20MiB - 90MiB dump (27 files - 1620.000000MiB) 26

5.3.2.1 Differences from previous stress test (2015-11-08) . . 27

vii

5.3.3 20MiB - 90MiB dump (99 files - 5940.000000MiB) 27

5.3.3.1 Differences from previous stress test (2015-11-08) . . 27

5.3.4 20MiB - 90MiB dump (180 files - 10800.000000MiB) 27

5.3.4.1 Differences from previous stress test (2015-11-08) . . 28

5.3.5 Tools used . 28

5.3.6 Observations . 28

5.3.7 Issues found . 30

6 Conclusion and Future Work 33

References 34

viii

List of Tables

ix

List of Figures

4-1 High level view of combox on two computers. 5

5-1 time to process all files . 29

5-2 avg. time to split and encrypt . 30

5-3 time to process all files - difference between 2015 and 2016 31

5-4 avg. time to split and encrypt - difference between 2015 and 2016 32

x

List of Abbreviations

YAML . YAML Ain’t Markup Language

CLI . Command Line Interface

GUI . Graphical User Interface

xi

Preface

42.

xii

Chapter 1

Introduction

1

Chapter 2

Background

2

Chapter 3

Literature Review

3

Chapter 4

Structure and Design

In general, when modeling

phenomena in science and

engineering, we begin with

simplified, incomplete models. As

we examine things in greater detail,

these simple models become

inadequate and must be replaced by

more refined models.

Structure and Interpretation of

Computer Programs, Section

1.1.5 [1]

4

file.txt

c
o
m

b
o
x
 d

ir
e
c
to

ry

file.txt.shard0

node directory

file.txt.shard1

node directory

Computer I

file.txt.shard0

node directory

file.txt

c
o
m

b
o
x
 d

ire
c
to

ry

file.txt.shard1

node directory

Computer II

In
te

rn
e
t

combox directory

monitor

node client node directory monitor

Figure 4-1: High level view of combox on two computers.

4.1 Structure of combox

4.1.1 combox configuration

4.1.2 combox directory monitor

4.1.3 Node directory monitor

4.1.4 Database structure

4.2 combox modules overview

combox is spread into modules that have functions and/or classes. As of 2016-02-04

combox is considerably a small program:

5

$ wc -l combox/*.py

144 combox/cbox.py

178 combox/config.py

241 combox/crypto.py

891 combox/events.py

541 combox/file.py

454 combox/gui.py

0 combox/__init__.py

71 combox/log.py

278 combox/silo.py

29 combox/_version.py

2827 total

This section gives an overview of each of the combox modules with extreme

brevity:

combox.cbox This module contains run_cb function runs combox; it creates an in-

stance threading.Lock for database access and a shared threading.Lock for

the combox.events.ComboxDirMonitor and combox.events.NodeDirMonitor;

it initializes an instance combox.events.ComboxDirMonitor that monitors the

combox directory and an instance of combox.events.NodeDirMonitor for each

node directory for monitoring the node directories. This modules also houses

the main function that parses commandline arguments, starts combox configu-

ration if needed or loads the combox configuration file to start running combox.

combox.config Accomodates two import functions – config_cb and get_nodedirs.

The config_cb is the combox configuration function that allows the user to con-

figure combox; this function was designed in a such way that it was possible to

use for both CLI and GUI methods of configuring combox. The get_nodedirs

6

function returns, as a list, the paths of the node directories; this function use

used in numerous places in other combox modules.

combox.crypto This has functions for encrypting and decrypting data; encrypting

and decrypting shards (encrypt_shards and decrypt_shards); a function for

splitting a file into shards, encrypting those shards and spreading them across

node directories (split_and_encrypt); a function for decrypting the shards

from the node directories, reconstructing the file from the decrypted shards

and put the file back to the combox directory (decrypt_and_glue). Func-

tions split_and_encrypt and decrypt_and_glue are the two functions that

that are extensively used by the combox.events module; all other functions

in this module are pretty much helper functions are split_and_encrypt and

decrypt_and_glue functions and are not used by other modules.

combox.events This module took the most time to write and test and it is the most

complex module in combox at the time of writing this report. It contains just

two classes – ComboxDirMonitor and NodeDirMonitor. The ComboxDirMonitor

inherits the watchdog.events.LoggingEventHandler and is responsible for

monitoring for changes in the combox directory and doing the right thing when

change happens in the combox directory. The NodeDirMonitor also inherits

watchdog.events.LoggingEventHandler and similarly responsible for moni-

toring a node directory and doing the right thing when a change happens in the

node directory; subjectively, NodeDirMonitor is slightly more complex than the

ComboxDirMonitor.

combox.file This is the second largest module in combox. It contains utility func-

tions for reading, writing, moving files/directiores, hashing files, splitting a file

into shards, glue shards into a file, manipulating directories inside combox and

node directories.

7

combox.gui Contains the ComboxConfigDialog class; it is the graphical interface for

configuring combox. The class uses the Tkinter library[2] for spawing graphical

elements. Other graphical libraries include PyQt[3] were considered Tkinter

was chosen over others because it works on all Unix systems and Microsoft’s

Windows and it is part of the core python (version 3).

combox.log All the messages to stdout and stderr are sent through the functions

log_i and log_e functions defined in this module.

combox.silo Contains the ComboxSilo class which is the canonical interface for com-

box for managing information about the files in the combox directory. Inter-

nally, the ComboxSilo class uses the pickleDB library[4].

combox. version This is private module that contains variables that contain the

value of the present version and release of combox. The get_version function

in this module returns the full version number; this function used by setup.py.

4.3 Language choice

Back in October of 2014, I was learning to write in Python and when I had to

start working on combox, I chose to write combox in Python. In my first commit to

the combox repository, I had to say this about Python:

commit 2def977472b2e77ee88c9177f2d03f12b0263eb0

Author: rsiddharth <rsiddharth@ninthfloor.org>

Date: Wed Oct 29 23:24:58 2014 -0400

Initial commit: File splitter & File gluer done.

...

8

I like to write python FWIW. But after reading a dialect of Lisp when

I come back to python, it does not look very beautiful. I guess I’m

pretty convinced that there is no language that can ape the beauty of

Lisp.

If I were to write that commit message today (2016-02-04), I would’ve phrased

my reflections about Python differently. While I’ve not found a language that is

as intrinsically beautiful as Lisp, I think it is not quite right to compare Lisp and

Python. Python is a very readable language and it tends to be very accessible to

beginners. Also, it is hard to write unreadable Python code.

4.4 DRY

The core functionality of combox is to split, encrypt file shards, spread them

across node directories (Google Drive and Dropbox) and decrypt, glue shards and put

them back to the combox directory when a file is created/modified/deleted/moved in

another computer. The plan was to use external libraries to accomplish things that

fell outside the realm of what I consider the “core functionality of combox”; the main

reason behind this decision was to duly be an indolent programmer and not indulge

in trying to solve problems that others have already solved.

The watchdog[5] library was chosen for file monitoring; this library is compatible

with Unix systems and Windows. The pycrypto library[6] was used for encrypting

data; combox uses AES encryption scheme to encrypt file shards. The pickleDB[4]

library was used to store information about files in the combox directory; this library

is not very clean, but, it was what I exactly looking for, if there was no pickleDB,

I would’ve most probably written something similar to it and made it as part of

combox.

9

Looking back, the decision to use external libraries reduced the complexity of

combox, reduced the time to complete the initial working version of combox and made

it possible to spend more than 3 months just testing and fixing issues in combox.

4.5 Operating system compatibility

combox was developed on a aGNU/Linux machine, a conscious effort was made

to write in an operating system independent way. The top criteria for choosing a

library to use in combox was that it had to be compatible on all of the three major

computing platforms in 2014-20161.

As we were nearing the 0.1.0 release, combox was tested on OS X (See chapter

5) and OS X specific issues that were found eventually were eventually fixed. The

initial 0.1.0 release was compatible with GNU/Linux and OS X.

After the initial release of combox, we wanted to see if combox would be compatible

with Windows. We found that:

• Setting up the parapharnalia to run combox was non-trivial[7].

• The unit tests for the combox.file module royally failed.

At the time of writing the report, combox is in version 0.2.2 and it still not com-

patible with Windows. Comprehensive documentation of setting up the development

environment for combox on Windows was written[7] to make it less cumbersome for

anyone would want to work on making combox compatible with Windows.

4.6 combox as a python package

Before version 0.2.0, the canonical way to install combox was to pull the source

from the git repository with:

1GNU/Linux, OS X and, Windows

10

git clone git://ricketyspace.net/combox.git

Then, do:

cd combox

Finally install combox with:

python setup.py install

Yes, installing combox on a machine was indeed non-trivial.

Python has a package registry called CheeseShop2; all packages registered at the

CheeseShop can be installed using pip – Python’s platform independent package

managment system[8] – with:

pip install packagename

To make it easier for (python) users to install combox on their machine, an effort

was made to make it a python package[9]. From version 0.2.0, combox has been

registered python package at the CheeseShop. (Python) users can now easily get a

copy of combox on their machine with:

pip install combox

All versions of combox that is available through the CheeseShop are digitally

signed using the following GPG key:

pub 4096R/00B252AF 2014-09-08 [expires: 2017-09-07]

Key fingerprint = C174 1162 CEED 5FE8 9954 A4B9 9DF9 7838 00B2 52AF

uid Siddharth Ravikumar (sravik) <sravik@bgsu.edu>

sub 4096R/09CECEDB 2014-09-08 [expires: 2017-09-07]

All versions of combox’s source are also available as a compressed TAR ball and as a

ZIP archive; they can be downloaded from https://ricketyspace.net/combox/releases.html.

2code name for Python Package Index, see https://wiki.python.org/moin/CheeseShop

11

https://ricketyspace.net/combox/releases.html

4.7 With the benefit of hindsight

combox’s node monitor (combox.events.NodeDirMonitor) was written with the

assumption that the node monitor will be the only entity that will be making changes

to the node directory that it is monitoring. When started testing combox with node

clients (Dropbox client and Google Drive client), we observed that the node clients

made changes to the node directory when a file was created/modified/renamed/deleted;

for instance, when a shard, in the Dropbox node directory, was modified on a remote

computer, the Dropbox client would first pull the newer version of the shard un-

der the .dropbox.cache directory as a temprorary file, move the older version of

the shard under .dropbox.cache as a backup, and finally move the latest version

of the shard, stored as a temprorary file under the .dropbox.cache directory, to

the respective location in the Dropbox node directory; when a shard, in the Google

Drive node directory, was remotely modified on a remote computer, the Google Drive

client would delete the older version of the shard from the Google Drive node di-

rectory and then create the newer version of the shard in the respective location

under the Google Drive node directory. Since combox did not know about the node

client’s behaviour, it confused combox and broke it royally; we had to make major

changes to the combox.eventns.NodeDirMonitor class to make combox aware of

the node client’s behavior, this eventually brutally obliterated the simplicity of the

combox.eventns.NodeDirMonitor class which I was proud of.

I’m not sure how I would have written the combox.events module if I had

known about the Dropbox and Google Drive client’s behaviour before writing the

combox.events.NodeDirMonitor or the combox.events.ComboxDirMonitor classes.

Looking back, if there one thing I would want to re-think/redo, it is the combox.events

module.

The most important lesson I’m taking away from the experience of writing combox

12

is the insight of how easy it is to ruthless crush the simplicity of a program due to

unforeseen use cases.

<3

13

Chapter 5

Testing

Testing shows the presence, not the

absence of bugs.

Dijkstra[10]

5.1 Unit testing

The nose[11] testing framework was used to write unit tests for the functions and

classes part of the combox.config, combox.crypto, combox.events, combox.file,

combox.silo combox._versionmodules. Unit tests were not written for combox.cbox,

combox.gui, combox.combox.log modules.

Unit tests for combox become reality by pure serendipity. During the time, when I

started working on combox, I was learning to use the nose library to unit test python

code. Since, combox was being written in python, I started making it a norm to write

unit tests for functions and classes in combox modules.

As mentioned before, unit tests were not written for some modules either because

it would make no sense to write one (for the combox.cbox module, for instance,

which basically uses functions and classes defined in other modules to run combox)

or it was not clear how to write unit tests it (the combox.gui contains just the

ComboxConfigDialog a graphical front-end which uses the configuration function

14

defined in the combox.config module to complete the combox configuration based

on the user input).

It must be noted here that pure Test Driven Development (TDD) was not observed

– most of the time the function/class was written before the its corresponding test

was written.

5.1.1 Benefits

While writing unit tests definitely increased the time to write a particular feature,

it enabled me to immediately check if a feature worked as it should for the given use

case or given set of inputs.

With the benefit of hindsight, unit tests greatly helped in testing the compatibil-

ity of combox on OSX. Before the v0.1.0 release, combox’s node directory monitor

always assumed that a file’s first shard (shard0) is always available; while this as-

sumption did not create any problems on GNU/Linux, on OS X, this assumption

made the node directory monitor to behave erratically – this issue (bug #4[12] was

immediately found when the unit tests were run for the first time on OS X. Another

instance where unit tests helped was just before the v0.2.0 release; major changes,

including the introduction of file locks in the ComboxDirMonitor, were made to the

combox.events. When the unit tests were run OS X, two tests failed, revealing a

difference in behavior of watchdog[5] on GNU/Linux and OS X on file creation[13];

without unit tests, there is a high probability that this bug would never have been

found by now.

5.1.2 Caveats

Unit tests are helpful in testing the correctness of a feature for N number of use

cases but it does not necessarily mean the written feature correctly behaves for use

15

cases that the author of the feature did not consider or did not think about while

writing the respective feature. As Dijkstra correctly observed:

Unit tests failed to reveal bugs #4, #5 #6 #7 #5 #10 #11[12]; these bugs were

found when manually testing combox.

5.2 Manual testing

The unit tests for the combox.eventsmodule test the correctness of the ComboxDirMonitor

and NodeDirMonitor independently; in order to comprehensively test the correctness

of both ComboxDirMonitor and NodeDirMonitor, it was required to manually test

combox running on more than one computer. As you’ll see in the following subsec-

tions, several bugs were found and fixed while doing manual testing.

Three different types of setups were used to test combox. The first kind of setup

has two GNU/Linux machines each using combox to sync files between each other

with Dropbox and Google Drive being the nodes; the second kind of setup has a

GNU/Linux machine and a OS X machine each using combox to sync files between

each other with Dropbox and Google Drive being the nodes; the third kind of setup

has a GNU/Linux machine and OS X machine each using combox to sync files between

each other with Dropbox, Google Drive and a USB stick as nodes.

5.2.1 General setup and notes

• On the GNU/Linux machines, the official Dropbox client was used to sync the

Dropbox node directory to Dropbox’ servers. rclone[14] was used to sync the

Google Drive node directory to Google Drive’ servers;At the time of testing,

Google Drive did not have client for GNU/Linux.

• On OS X, the official Dropbox client was used to sync the Dropbox node direc-

tory to Dropbox’s servers; the official Google Drive client was used to sync the

16

Google Drive node directory to Google Driver’ servers.

• Since combox is extremely event-driven, combox must be started before the

Dropbox and Google Drive clients start syncing their respective directories

(nodes).

5.2.2 Testing on two GNU/Linux machines

combox was run to two GNU/Linux machines and a file was alternatively cre-

ated/modified/renamed/deleted on an of the GNU/Linux machine and it was ver-

ified if the respective file was also created/modified/renamed/deleted on the other

GNU/Linux machine. One of the GNU/Linux machine (lyra) was a virtual ma-

chine running Debian GNU/Linux stable (version 8.x); the other GNU/Linux ma-

chine (grus) was a physical machine running Debian GNU/Linux testing. The node

directories to scatter the files’ shards were the Dropbox directory and Google Drive

directory. The official Dropbox client was used to automatically sync files from the

Dropbox directory to the Dropbox’ server; rclone[14] was used to sync files from

Google Drive directory to Google Drive’ server.

5.2.2.1 Issues found

• Some editors, especially on POSIX complaint systems, create backup version of

the file being edited. combox was detecting this backup file as a “new file” and

it split it into shards, encrypted the shards and scattered the shards across the

node directories. The right thing for combox to do was to ignore these backup

files and do nothing about them. This issue was fixed on 2015-09-29[12]. Now

the ComboxDirMonitor, on a “file created” or “file modified” event, returns

from the on_created or on_modified callback when it finds that the file is a

backup/temporary file.

17

• Dropbox client maintains the .dropbox.cache directory under the root of the

Dropbox directory.

– When a file (shard) was created on another computer, the Dropbox client

pulls the new file (shard) to this computer into .dropbox.cache as a tem-

porary file and then moves the new file (shard) to its respective location

with the appropriate name.

– When a file (shard) was modified on another computer, the Dropbox client

pulls the modified file (shard) to this computer into the .dropbox.cache

as a temporary file; moves the old version of the file (shard) under the

Dropbox directory into the .dropbox.cache; finally moves the updated

copy of the file, stored as a temporary file, into the Dropbox directory to

its respective location with the appropriate name.

– When a file (shard) was deleted on another computer, the Dropbox client

moves the delete file into the .dropbox.cache directory on this computer.

All of the above behavior of the Dropbox client epically broke combox. Commits

3d714c5 to 6e1133f[15] fixed combox by making it aware of Dropbox’s client

behavior.

5.2.2.2 Demo

Demo of combox being used on two GNU/Linux machines can be viewed at

https://ricketyspace.net/combox/combox-2-gnus.webm.

lyra (virtual machine) and grus (bare-metal) are the two GNU/Linux machines

being used for the demo.

Description of what happens in the demo follows:

- (lyra) install combox.

- (lyra) run combox (test mode).

18

https://ricketyspace.net/combox/combox-2-gnus.webm

- (lyra) create file walden.pond with content “It must be beautiful there”.

- (lyra) sync Google Drive using rclone.

- (grus) sync Google Drive using rclone.

- (grus) git pull latest copy of combox.

- (grus) install combox

- (grus) run combox (testing mode).

- (grus) verify that walden.pond was create on this machine.

- (grus) append ’Peaceful too.’ to walden.pond.

- (grus) sync Google Drive using rclone.

- (lyra) sync Google Drive using rclone.

- (lyra) verify that the latest copy of walden.pond is there in the combox directory;

it should contain ’Peaceful too.’ in the last line.

- (lyra) append “I’ve a dream” to walden.pond.

- (lyra) sync Google Drive using rclone.

- (grus) sync Google Drive using rclone.

- (grus) verify that the latest copy of walden.pond is there in the combox directory;

it should contain “I’ve a dream” in the last line.

- (grus) remove walden.pond from combox directory.

- (grus) sync Google Drive using rclone.

- (lyra) sync Google Drive using rclone.

- (lyra) verify that walden.pond is removed from the combox directory.

- (grus) open dropbox and Google drive accounts from the web browser.

- (lyra) create file manufacturing.consent. with content “Chomsky stuff?”.

- (lyra) sync Google Drive using rclone.

- (grus) sync Google Drive using rclone.

- (grus) verify that manufacturing.consent was created in the combox directory.

19

- (grus) verify that the shards of manufacturing.consent were created on Drop-

box and Google Drive through the web browser.

5.2.3 Testing on a GNU/Linux and an OS X machine

combox was run on a GNU/Linux machine and an OS X machine and a file was

alternatively created/modified/renamed/deleted on one of the machine and it was

verified if the respective file was also created/modified/renamed/deleted on the other

machine. The GNU/Linux machine was a virtual machine (lyra) running Debian

GNU/Linux stable; the OS X machine was on Mavericks (10.9) during the initial

stage of testing, later it was upgraded to Yosemite (10.10). The node directories

to scatter files’ shards were the Dropbox directory and the Google Drive directory.

The official Dropbox client was used to automatically sync files from the Dropbox

directory to the Dropbox’ server on both the GNU/Linux machine and the OS X

machine; the official Google Drive client was used to automatically sync files from the

Google Drive directory to Google Drive’ server on OS X and rclone[14] was used to

sync files from the Google Drive directory to Google Drive’s server on GNU/Linux.

5.2.3.1 Issues found

• When a file was modified on another computer, on this computer combox as-

sumed that first shard (shard0) will be updated first and also counted on the

existence of the first shard (shard0). It was observed that the order in which the

shards were updated were unpredictable on this computer and if the first shard

(shard0) was stored in the Dropbox directory, it will momentarily disappear be-

fore the most updated shard becomes available in the Dropbox directory; this

broke combox. This issue was fixed on 2015-08-25[16]. This issue is not got

to do with the nature of the setup but it is related to the Dropbox’s behavior

elaborated in section 5.2.2.1.

20

• The official Google Drive client when it pulls an updated version of the file

from Google Drive’ server, instead directly updating the respective file on the

computer, it deletes the older version of the file and creates the latest version of

the file at the respective location in the Google Drive directory; this behavior of

the Google Drive confused and broke combox. This issue was fixed 2015-09-06

by making combox under the official Google Client’s behavior[17].

• When a non-empty directory was move/renamed on another computer, the old

directory was not getting properly deleted on this computer; this was happening

because the files under the directory being renamed were not deleted when it

was time for NodeDirMonitor to rmdir the old directory. This issue again is

not specific to the nature of the setup but was found while testing combox on

this setup. This issue was fixed on 2015-09-12[18].

• It was found that combox.file.rm_path function failed when it was given a

non-existent path to remove; this issue was fixed on 2015-09-12[19].

5.2.3.2 Demo

Demo of combox being used on a GNU/Linux machine and OS X machine can be

viewed at https://ricketyspace.net/combox/combox-gnu-osx.webm

lyra is the GNU/Linux (virtual) machine and dhcp-129-1-66-1 is the OS X

machine that is being used for the demo. The OS X machine is accessed through

VNC[20].

Description of what happens in the demo follows:

- (lyra) create file cat.stevens with content “peace train”.

- (lyra) sync Google Drive using rclone.

- (dhcp-129-1-66-1) verify that file cat.stevens is created with content “peace

train”.

21

https://ricketyspace.net/combox/combox-gnu-osx.webm

- (dhcp-129-1-66-1) append string “moonshadow” to file cat.stevens.

- (lyra) sync Google Drive using rclone.

- (lyra) verify that the file cat.stevens was updated (modified); last line must

have the string “moonshadow”.

- (lyra) append string “father and son” to the file cat.stevens.

- (lyra) sync Google Drive using rclone.

- (dhcp-129-1-66-1) verify that the file cat.stevens was updated (modified);

last line must have the string “father and son”.

- (dhcp-129-1-66-1) rename file cat.stevens to yusuf.islam

- (lyra) sync Google Drive using rclone.

- (lyra) verify that the file cat.stevens was renamed to yusuf.islam.

5.2.4 Testing with a USB stick as a node

combox was run on a GNU/Linux machine and an OS X machine and a file

was alternatively created/modified/deleted on one of the machine and it was verified

if the repsective file was also create/modified/deleted on the other machine. The

GNU/Linux machine was a physical machine (grus) running Debian GNU/Linux

stable; The OS X machine was on Mavericks (10.9). The node directories to scat-

ter files’ shards were the Dropbox directory, Google Drive directory and the USB

stick (ZAPHOD, FAT filesystem). The official Dropbox client was used to automati-

cally sync files from Dropbox directory to Dropbox’ server on both the GNU/Linux

machine and OS X machine; the official Google Drive client was used to automati-

cally sync files from the Google Drive directory to Google Drive’ server on OS X and

rclone[14] was used to sync files from the Google Drive directory to Google Drive’s

server on GNU/Linux; the same USB stick (ZAPHOD) was used on bothe GNU/Linux

and Dropbox to store the third shard (shard2) of a file.

22

5.2.4.1 Caveats

• When a removable USB disk is used as a node, combox must be turned off before

ejecting/unmounting the USB disk; combox does not expect a node directory

to disappear when it is running, if the USB disk is removed when combox is

running, then combox goes to a undefined state.

• When a file modified on machine A is synced to machine B, combox must be

turned on first before turning on Dropbox and Google Drive clients and the

shard in the USB disk needs to be “touched” for combox to detect that the

file was modified on the remote computer and update the file locally on this

machine.

• File rename/move does not work. To make it work, core functionality of combox

must be re-written.

5.2.4.2 Demo

Demo of combox being used with a USB stick as the third node can be view at

https://ricketyspace.net/combox/combox-usb-node-demo.webm

grus is the GNU/Linux machine and dhcp-129-1-66-1 is the OS X machine that

is being used for the demo. ZAPHOD is the FAT32 USB stick used as the third node.

Description of what happens in the demo follows:

- (grus) start combox.

- (grus) create a file called simon.and.garfunkel with content “the boxer”.

- (grus) sync Google Drive using rclone.

- (grus) stop combox.

- (grus) unmount USB stick (ZAPHOD) from grus.

- (dhcp-129-1-66-1) mount USB stick (ZAPHOD) to (dhcp-129-1-66-1).

- (dhcp-129-1-66-1) start Dropbox client.

23

https://ricketyspace.net/combox/combox-usb-node-demo.webm

- (dhcp-129-1-66-1) start Google Drive client.

- (dhcp-129-1-66-1) start combox.

- (dhcp-129-1-66-1) verify that the file simon.and.garfunkel with content “the

boxer” was created.

- (dhcp-129-1-66-1) append string “mrs. robinson” to file simon.and.garfunkel.

- (dhcp-129-1-66-1) stop combox.

- (dhcp-129-1-66-1) stop Google Drive client.

- (dhcp-129-1-66-1) stop Dropbox client.

- (dhcp-129-1-66-1) unmount the USB stick (ZAPHOD) from (dhcp-129-1-66-1).

- (grus) mount the USB stick (ZAPHOD) to (grus).

- (grus) start combox.

- (grus) start Dropbox client.

- (grus) sync Google Drive using rclone.

- (grus) touch simon.and.garfunkel.shard2 in the USB stick (ZAPHOD).

- (grus) verify that the file simon.and.garfunkel is updated; the last line must

contain the string “mrs. robinson”.

- (grus) remove the file simon.and.garfunkel.

- (grus) sync Google Drive using rclone.

- (grus) unmount the USB stick (ZAPHOD) from (grus).

- (grus) stop Dropbox client.

- (dhcp-129-1-66-1) mount the USB stick (ZAPHOD) to (dhcp-129-1-66-1).

- (dhcp-129-1-66-1) start Google Drive client.

- (dhcp-129-1-66-1) start Dropbox client.

- (dhcp-129-1-66-1) start combox.

- (dhcp-129-1-66-1) verify that the file simon.and.garfunkel was deleted.

24

5.3 Stress testing

Large number of files of different sizes were dumped to the combox directory

between an one second interval to see how combox responds to high load. The file

dump size was varied from 424.798190MiB (27 files) to 10800.000000MiB (180 files);

the average time taken to split a file and the total time to process all files were

calculated for each dump.

Stress testing was first done on 2015-11-08. In mid November the ComboxDirMonitor

was drastically modified to make it use the file Lock shared the instances of NodeDirMonitor[21];

my hunch was that this change in ComboxDirMonitor directly affected the perfor-

mance of combox and therefore the results that were got from stress testing on

2015-11-08 would no longer be valid. Stress testing was again done on 2016-01-16;

the results of this stress test are in sections 5.3.1 to 5.3.4, section 5.3.5 gives infor-

mation about the tools used for stress testing, section 5.3.6 contains the observations

and comparisons between this stress test and the one done on 2015-11-08, lastly

section 5.3.7 reveals the issues that were found with combox by virtue of doing the

stress tests.

25

5.3.1 flac dump (27 files - 424.798190MiB)

field value

delay between a file dump 1s

start time of processing 11:00:54

end time of processing 11:01:38

total time taken to process all files 00:00:44

no. of files 27

total size of all files 445433187.000000 bytes (424.798190MiB)

avg. file size 16497525.000000 bytes (15.733266MiB)

avg. time to split and encrypt a file 352.583370 ms

5.3.1.1 Differences from previous stress test (2015-11-08)

• Total time to process all files was faster by 1min3secs.

• Average time to split and encrypt a file reduced by 28.337963000000002ms.

5.3.2 20MiB - 90MiB dump (27 files - 1620.000000MiB)

field value

delay between a file dump 1s

start time of processing 12:26:45

end time of processing 12:29:07

total time taken to process all files 00:02:22

no. of files 27

total size of all files 1698693120.000000 bytes (1620.000000MiB)

avg. file size 62914560.000000 bytes (60.000000MiB)

avg. time to split and encrypt a file 2670.596556ms

26

5.3.2.1 Differences from previous stress test (2015-11-08)

• Total time to process all files was slower by 4secs.

• Average time to split and encrypt a file reduced by 25.52536999999984ms.

5.3.3 20MiB - 90MiB dump (99 files - 5940.000000MiB)

field value

delay between a file dump 1s

start time of processing 13:10:16

end time of processing 13:19:26

total time taken to process all files 00:09:10

no. of files 99

total size of all files 6228541440.000000 bytes (5940.000000MiB)

avg. file size 62914560.000000 bytes (60.000000MiB)

avg. time to split and encrypt a file 2979.647586ms

5.3.3.1 Differences from previous stress test (2015-11-08)

• Total time to process all files was faster by 59secs.

• Average time to split and encrypt a file increased by 206.20906100000002ms.

5.3.4 20MiB - 90MiB dump (180 files - 10800.000000MiB)

27

field value

delay between a file dump 1s

start time of processing 13:42:06

end time of processing 14:00:10

total time taken to process all files 00:18:04

no. of files 180

total size of all files 11324620800.000000 bytes (10800.000000MiB)

avg. file size 62914560.000000 bytes (60.000000MiB)

avg. time to split and encrypt a file 3423.087539ms

5.3.4.1 Differences from previous stress test (2015-11-08)

• Total time to process all files was slower by 1min2secs

• Average time to split and encrypt a file increased by 399.87623299999996ms.

5.3.5 Tools used

The dump script[22] was used to dump files to the combox directory between one

second intervals; a night of Emacs Lisp indulgence made it possible to quickly slurp

the required data from the combox output and calculate the average time to split

and encrypt a file and the total amount of time taken to process the files for a given

dump[23]; lastly org-mode was used to document all data gathered during stress

testing[24].

5.3.6 Observations

• Figure 5-1 shows the time it takes combox to process files for a given file dump1.

As can be observed from the graph, the total time taken to process all the files

1A “file dump” here means a bunch of files copied to the combox directory between 1 sec intervals.

28

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000

time taken (s)

data processed (MiB)

time to process all files

+

+

+

+
+

Figure 5-1: time to process all files

tends almost linearly increase with the increase in the size of the file dump2.

• Figure 5-2 show the average time it takes combox to split and encrypt a file

for a given file dump. There is a steep increase in the average time from the

424.798190MiB dump and the 1620.000000MiB dump, after which the average

time to split and encrypt a file seems to almost linearly increase; The main

reason for this is that the average file size for dumps from 1620.000000MiB to

10800.000000MiB are the same.

• Figure 5-3 shows the graphs for the total amount of time taken to process all files

for a given file dump in the 2016-01-16 and 2015-11-8 stress test. The amount

of time needed to process all fills seems to be reduced for the 5940.000000MiB

file dump when compared to the 2015 stress test results and it seems to be

slightly higher for the 10800.000000MiB file dump when compared to the 2015

stress test.

2The “size of the file dump” is the total size of all files in a given file dump.

29

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000 12000

avg time taken (ms)

total size of files processed (MiB)

avg. time to split & encrypt file

+

+

+

++

Figure 5-2: avg. time to split and encrypt

• Similarly, figure 5-4 shows the graphs for the average time to split and encrypt

for a given file dump in the 2016-01-16 and the 2015-11-8 stress test. The

average time taken seems to able almost the same for the 424.798190MiB and

the 1620.000000 dump, but for the 5940.000000MiB and the 10800.000000MiB

dump the average time taken seems to higher for the 2016 stress test when

compared to the 2015 stress test.

5.3.7 Issues found

• Initially when combox was stress tested with huge files, combox would get over-

whelmed leading to the computer running out of memory and the load average

sometimes peaking at 8. At first, it was assumed that there was a bug in com-

box which caused this to happen, but later it was found that watchdog[5] was

generating a large number “file modified” events when a huge file (~500MiB was

modified). To prevent watchdog from generating a large number “file mod-

ified” events for a single modification of a huge file, a delay proportional to

30

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000

time taken (s)

data processed (MiB)

time to process all files (2016)

+

+

+

+
+

time to process all files (2015)

×
×

×

×

×

Figure 5-3: time to process all files - difference between 2015 and 2016

the size of the file was created in the on_modified callback methods in both

ComboxDirMonitor and NodeDirMonitor[25], this fixed the issue. Also, this it

might be useful to note here that this was “the” hardest issue I dealt with in

working on combox.

31

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000 12000

avg time taken (ms)

total size of files processed (MiB)

avg. time to split & encrypt file (2016)

+

+

+

+

+
avg. time to split & encrypt file (2015)

×

×
×

×

×

Figure 5-4: avg. time to split and encrypt - difference between 2015 and 2016

32

Chapter 6

Conclusion and Future Work

33

References

[1] H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation of

Computer Programs, 2nd ed. MIT Press, 1996.

[2] “Tkinter - python interface to tcl/tk.” [Online]. Available:

https://docs.python.org/2/library/tkinter.html

[3] “Pyqt - python binding of the cross-platform gui toolkit qt.” [Online]. Available:

https://riverbankcomputing.com/software/pyqt/intro

[4] “pickledb - lightweight and simple key-value store.” [Online]. Available:

https://pythonhosted.org/pickleDB

[5] “Watchdog - python api library and shell utilities to monitor file system events.”

[Online]. Available: https://pythonhosted.org/watchdog/

[6] “Pycrypto - the python cryptography toolkit.” [Online]. Available:

https://www.dlitz.net/software/pycrypto/

[7] “setup combox on windows.” [Online]. Available:

https://ricketyspace.net/combox/setup#windows

[8] “pip - pypa recommended tool for installing python packages.” [Online].

Available: https://pip.pypa.io/en/stable/

[9] “Python packaging user guide.” [Online]. Available:

https://packaging.python.org/en/latest/

34

https://docs.python.org/2/library/tkinter.html
https://riverbankcomputing.com/software/pyqt/intro
https://pythonhosted.org/pickleDB
https://pythonhosted.org/watchdog/
https://www.dlitz.net/software/pycrypto/
https://ricketyspace.net/combox/setup#windows
https://pip.pypa.io/en/stable/
https://packaging.python.org/en/latest/

[10] J. Buxton and B. Randell, “Software engineering techniques,” NATO

Science Committee, Tech. Rep. p. 16, 1969. [Online]. Available:

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF

[11] “Nose - a nicer testing for python.” [Online]. Available:

https://nose.readthedocs.org/en/latest/

[12] “combox issue tracker (org-mode).” [Online]. Available:

https://git.ricketyspace.net/combox/plain/TODO.org

[13] “combox - watchdog ’file create event’ bug fix.” [Online]. Available:

https://git.ricketyspace.net/combox/commit/?id=8c86e7c28738c66c0e04ae7886b44dbcdfc6369e

[14] “rclone - command line program to sync files and directories to and from google

drive.” [Online]. Available: http://rclone.org/

[15] “combox - git commits - dropbox client behavior fix.” [Online]. Available:

https://git.ricketyspace.net/combox/log/?qt=range&q=3d714c5..6e1133f

[16] “combox - git commit - shard modification fix.” [Online]. Available:

https://git.ricketyspace.net/combox/commit/?id=d5b52030348d40600b4c9256f76e5183a85fbb17

[17] “combox - git commit - google client behavior fix.” [Online]. Available:

https://git.ricketyspace.net/combox/commit/?id=37385a90f90cb9d4dfd13d9d2e3cbcace8011e9e

[18] “combox - git commit - bug six fix.” [Online]. Available:

https://git.ricketyspace.net/combox/commit/?id=9d14db03da5d10d5ab0d7cc76b20e7b1ed5523bf

[19] “combox - git commit - bug seven fix.” [Online]. Available:

https://git.ricketyspace.net/combox/commit/?id=422238eb4904de14842221fa09a2b4028801afb1

[20] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual network

computing,” Internet Computing, IEEE, vol. 2, no. 1, pp. 33–38, Jan 1998.

35

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF
https://nose.readthedocs.org/en/latest/
https://git.ricketyspace.net/combox/plain/TODO.org
https://git.ricketyspace.net/combox/commit/?id=8c86e7c28738c66c0e04ae7886b44dbcdfc6369e
http://rclone.org/
https://git.ricketyspace.net/combox/log/?qt=range&q=3d714c5..6e1133f
https://git.ricketyspace.net/combox/commit/?id=d5b52030348d40600b4c9256f76e5183a85fbb17
https://git.ricketyspace.net/combox/commit/?id=37385a90f90cb9d4dfd13d9d2e3cbcace8011e9e
https://git.ricketyspace.net/combox/commit/?id=9d14db03da5d10d5ab0d7cc76b20e7b1ed5523bf
https://git.ricketyspace.net/combox/commit/?id=422238eb4904de14842221fa09a2b4028801afb1

[21] “combox - git commit - bug eleven fix.” [Online]. Available:

https://git.ricketyspace.net/combox/commit/?id=5aa1ba0c1dcad62931ba27bb66bf115233086d6c

[22] “dump script (python) for stressing testing combox.” [Online]. Available:

https://git.ricketyspace.net/combox-paper/plain/dumper/dump

[23] “dumps.el - emacs lisp magic to slurp and process output from combox.” [Online].

Available: https://git.ricketyspace.net/combox-paper/plain/scripts/dumps.el

[24] “benchmarks.org - document containing all information

about the stress testing combox.” [Online]. Available:

https://git.ricketyspace.net/combox-paper/plain/notes/benchmarks.org

[25] “combox - git commit - bug ten fix.” [Online]. Available:

https://git.ricketyspace.net/combox/commit?id=7ed3c9cbe6e56223b043a23408474f9df08f119e

36

https://git.ricketyspace.net/combox/commit/?id=5aa1ba0c1dcad62931ba27bb66bf115233086d6c
https://git.ricketyspace.net/combox-paper/plain/dumper/dump
https://git.ricketyspace.net/combox-paper/plain/scripts/dumps.el
https://git.ricketyspace.net/combox-paper/plain/notes/benchmarks.org
https://git.ricketyspace.net/combox/commit?id=7ed3c9cbe6e56223b043a23408474f9df08f119e

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Preface
	Introduction
	Background
	Literature Review
	Structure and Design
	Structure of combox
	combox configuration
	combox directory monitor
	Node directory monitor
	Database structure

	combox modules overview
	Language choice
	DRY
	Operating system compatibility
	combox as a python package
	With the benefit of hindsight

	Testing
	Unit testing
	Benefits
	Caveats

	Manual testing
	General setup and notes
	Testing on two GNU/Linux machines
	Issues found
	Demo

	Testing on a GNU/Linux and an OS X machine
	Issues found
	Demo

	Testing with a USB stick as a node
	Caveats
	Demo

	Stress testing
	flac dump (27 files - 424.798190MiB)
	Differences from previous stress test (2015-11-08)

	20MiB - 90MiB dump (27 files - 1620.000000MiB)
	Differences from previous stress test (2015-11-08)

	20MiB - 90MiB dump (99 files - 5940.000000MiB)
	Differences from previous stress test (2015-11-08)

	20MiB - 90MiB dump (180 files - 10800.000000MiB)
	Differences from previous stress test (2015-11-08)

	Tools used
	Observations
	Issues found

	Conclusion and Future Work
	References

