
A Project

entitled

combox

by

Siddharth Ravikumar

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Masters of Science Degree in Computer Science

Dr. Robert C. Green II, Committee Chair

Dr. XX, Committee Member

Dr. XX, Committee Member

Dr. Michael Ogawa, Dean
College of Graduate Studies

Bowling Green State University

May 2016

Public Domain, No Rights Reserved.

Siddharth Ravikumar has dedicated the work to the public domain by waiving all
of his rights to the work worldwide under copyright law, including all related and
neighboring rights, to the extent allowed by law. You can copy, modify, distribute
and perform the work, even for commercial purposes, all without asking permission.

See https://creativecommons.org/publicdomain/zero/1.0/legalcode for the full le-
gal verbiage.

An Abstract of

combox

by

Siddharth Ravikumar

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the
Masters of Science Degree in Computer Science

Bowling Green State University
May 2016

File storage providers on the Internet have made it non-trivial for individuals to

store personal files on the file storage provider’s computers. After Mr. Snowden dis-

closed information about the National Security Agency’ (NSA) surveillance programs

that allowed the NSA to access information stored on file storage provider’ computers,

online file storage became a non-solution for storing personal files for everyone who

detested the possibility of somebody else being able to access their personal files. In

the past, there have been separate efforts to come with a solution to allow individ-

uals to use storage space provided by file storage providers in a way that it made it

impossible for file storage providers and to access the files. combox is one such effort.

It allows an individual to store personal files in the “combox directory” on all her

computers (running GNU/Linux or OS X) and the combox program takes the files,

splits and encrypts them and spreads them across file storage providers’ directories.

Therefore, when an individual uses storage space provided by file storage providers

through combox, each file storage provider gets only a part of the file in an encrypted

form.

iii

Dedicated to the $EDITOR I use to literally write everything.

Acknowledgments

Dr. Robert C. Green II who gave me an opportunity to work on combox.

v

Contents

Abstract iii

Acknowledgments v

Contents vi

List of Tables viii

List of Figures ix

List of Abbreviations x

Preface xi

1 Introduction 1

2 Background 2

3 Literature Review 3

4 Architecture and Design 4

5 Testing 5

5.1 Unit testing . 5

5.1.1 Benefits . 6

5.1.2 Caveats . 6

5.2 Manual testing . 7

vi

5.3 Stress testing . 7

6 Conclusion and Future Work 10

References 11

vii

List of Tables

viii

List of Figures

5-1 time to process all files . 7

5-2 avg. time to split and encrypt . 8

5-3 time to process all files - difference between 2015 and 2016 8

5-4 avg. time to split and encrypt - difference between 2015 and 2016 9

ix

List of Abbreviations

YAML . YAML Ain’t Markup Language

x

Preface

42.

xi

Chapter 1

Introduction

1

Chapter 2

Background

2

Chapter 3

Literature Review

3

Chapter 4

Architecture and Design

4

Chapter 5

Testing

5.1 Unit testing

The nose[1] testing framework was used to write unit tests for the functions and

classes part of the combox.config, combox.crypto, combox.events, combox.file,

combox.silo combox._versionmodules. Unit tests were not written for combox.cbox,

combox.gui, combox.combox.log modules.

Unit tests for combox become reality by pure serendipity. During the time, when I

started working on combox, I was learning to use the nose library to unit test python

code. Since, combox was being written in python, I started making it a norm to write

unit tests for functions and classes in combox modules.

As mentioned before, unit tests were not written for some modules either because

it would make no sense to write one (for the combox.cbox module, for instance,

which basically uses functions and classes defined in other modules to run combox)

or it was not clear how to write unit tests it (the combox.gui contains just the

ComboxConfigDialog a graphical front-end which uses the configuration function

defined in the combox.config module to complete the combox configuration based

on the user input).

It must be noted here that pure Test Driven Development (TDD) was not observed

5

– most of the time the function/class was written before the its corresponding test

was written.

5.1.1 Benefits

While writing unit tests definitely increased the time to write a particular feature,

it enabled me to immediately check if a feature worked as it should for the given use

case or given set of inputs.

With the benefit of hindsight, unit tests greatly helped in testing the compatibil-

ity of combox on OSX. Before the v0.1.0 release, combox’s node directory monitor

always assumed that a file’s first shard (shard0) is always available; while this as-

sumption did not create any problems on GNU/Linux, on OS X, this assumption

made the node directory monitor to behave erraticly – this issue (bug #4[2] was im-

mediately found when the unit tests were run for the first time on OS X. Another

instance where unit tests helped was just before the v0.2.0 release; major changes,

including the introduction of file locks in the ComboxDirMonitor, were made to the

combox.events. When the unit tests were run OS X, two tests failed, revealing a

difference in behaviour of watchdog[3] on GNU/Linux and OS X on file creation[4];

without unit tests, there is a high probability that this bug would never have been

found by now.

5.1.2 Caveats

Unit tests are helpful in testing the correctness of a feature for N number of use

cases but it does not necessarily mean the written feature correctly behaves for use

cases that the author of the feature did not consider or did not think about while

writing the respective feature. As Dijkstra correctly observed[5]:

Testing shows the presence, not the absence of bugs

6

Unit tests failed reveal bugs #4, #5 #6 #7 #5 #10 #11[2]; these bugs were

found when manually testing combox.

5.2 Manual testing

5.3 Stress testing

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000

time taken (s)

data processed (MiB)

time to process all files

+

+

+

+
+

Figure 5-1: time to process all files

7

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000 12000

avg time taken (ms)

total size of files processed (MiB)

avg. time to split & encrypt file

+

+

+

++

Figure 5-2: avg. time to split and encrypt

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000

time taken (s)

data processed (MiB)

time to process all files (2016)

+

+

+

+
+

time to process all files (2015)

×
×

×

×

×

Figure 5-3: time to process all files - difference between 2015 and 2016

8

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000 10000 12000

avg time taken (ms)

total size of files processed (MiB)

avg. time to split & encrypt file (2016)

+

+

+

+

+
avg. time to split & encrypt file (2015)

×

×
×

×

×

Figure 5-4: avg. time to split and encrypt - difference between 2015 and 2016

9

Chapter 6

Conclusion and Future Work

10

References

[1] “Nose - a nicer testing for python.” [Online]. Available:

https://nose.readthedocs.org/en/latest/

[2] “combox issue tracker (org-mode).” [Online]. Available:

https://git.ricketyspace.net/combox/plain/TODO.org

[3] “Watchdog - python api library and shell utilities to monitor file system events.”

[Online]. Available: https://pythonhosted.org/watchdog/

[4] “combox - watchdog ’file create event’ bug fix.” [Online]. Available:

https://git.ricketyspace.net/combox/commit/?id=8c86e7c28738c66c0e04ae7886b44dbcdfc6369e

[5] J. Buxton and B. Randell, “Software engineering techniques,” NATO

Science Committee, Tech. Rep. p. 16, 1969. [Online]. Available:

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF

11

https://nose.readthedocs.org/en/latest/
https://git.ricketyspace.net/combox/plain/TODO.org
https://pythonhosted.org/watchdog/
https://git.ricketyspace.net/combox/commit/?id=8c86e7c28738c66c0e04ae7886b44dbcdfc6369e
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Preface
	Introduction
	Background
	Literature Review
	Architecture and Design
	Testing
	Unit testing
	Benefits
	Caveats

	Manual testing
	Stress testing

	Conclusion and Future Work
	References

