diff options
-rw-r--r-- | lib/cbrt.go | 68 | ||||
-rw-r--r-- | lib/cbrt_test.go | 23 |
2 files changed, 91 insertions, 0 deletions
diff --git a/lib/cbrt.go b/lib/cbrt.go new file mode 100644 index 0000000..69ddc17 --- /dev/null +++ b/lib/cbrt.go @@ -0,0 +1,68 @@ +// Copyright © 2021 siddharth ravikumar <s@ricketyspace.net> +// SPDX-License-Identifier: ISC + +package lib + +import ( + "math/big" +) + +// Cube root tolerance. +var bigCubeRootTolerance = big.NewFloat(0.00001) + +// Returns cube root of a. +// +// Uses Newton's method. +// https://en.wikipedia.org/wiki/Newton's_method +func BigCubeRoot(a *big.Float) *big.Float { + // If x^3 = a, then our f(x) is: + // f(x) = x^3 - a + fx := func(x *big.Float) *big.Float { + // x^3 + e := big.NewFloat(0) + e = e.Mul(x, x) + e = e.Mul(e, x) + + // x^2 - a + z := big.NewFloat(0).Sub(e, a) + + return z + } + + // f'(x) is: + // f'(x) = 3 * x^2 + fxPrime := func(x *big.Float) *big.Float { + // x^2 + x2 := big.NewFloat(0).Mul(x, x) + + // 3 * x^2 + z := big.NewFloat(0).Mul(big.NewFloat(3), x2) + + return z + } + + x0 := a // Initial guess. + max := 1000 // Max iterations. + i := 0 // Current iteration. + for i < max { + // f(x0) / f'(x0) + d := fx(x0) + d = d.Quo(d, fxPrime(x0)) + + // x0 - ( f(x0) / f'(x0) ) + x1 := big.NewFloat(0).Set(x0) + x1 = x1.Sub(x1, d) + + // x0 - x1 + df := big.NewFloat(0).Set(x0) + df = df.Sub(df, x1) + df = df.Abs(df) + if df.Cmp(bigCubeRootTolerance) == -1 { + return x1 + } + + i += 1 + x0 = x1 + } + return nil +} diff --git a/lib/cbrt_test.go b/lib/cbrt_test.go new file mode 100644 index 0000000..a5722c8 --- /dev/null +++ b/lib/cbrt_test.go @@ -0,0 +1,23 @@ +// Copyright © 2021 siddharth ravikumar <s@ricketyspace.net> +// SPDX-License-Identifier: ISC + +package lib + +import ( + "math/big" + "testing" +) + +func TestBigCubeRoot(t *testing.T) { + a := big.NewFloat(612) + acr := BigCubeRoot(a) + if acr == nil { + t.Errorf("Could not find cube root of %v\n", a) + return + } + expected := big.NewFloat(8.490184748) + if big.NewFloat(0).Sub(acr, expected).Cmp(bigCubeRootTolerance) != -1 { + t.Errorf("Could not find cube root of %v (%v)\n", a, acr) + return + } +} |