1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
// Copyright © 2021 siddharth ravikumar <s@ricketyspace.net>
// SPDX-License-Identifier: ISC
package lib
import (
"crypto/rand"
"math/big"
)
// Represents an RSA key pair.
type RSAPair struct {
Public *RSAPub
Private *RSAPrivate
}
type RSAPub struct {
e *big.Int
n *big.Int
}
type RSAPrivate struct {
d *big.Int
n *big.Int
}
// Copy b to a.
func biCopy(a, b *big.Int) *big.Int {
a.SetBytes(b.Bytes())
if b.Sign() == -1 {
a.Mul(a, big.NewInt(-1))
}
return a
}
func invmod(a, n *big.Int) (*big.Int, error) {
// Initialize.
t0 := big.NewInt(0)
t1 := big.NewInt(1)
r0 := biCopy(big.NewInt(0), n)
r1 := biCopy(big.NewInt(0), a)
for r1.Cmp(big.NewInt(0)) != 0 {
q := big.NewInt(0)
q.Div(r0, r1)
tt := big.NewInt(0)
tt = tt.Mul(q, t1)
tt = tt.Sub(t0, tt)
biCopy(t0, t1)
biCopy(t1, tt)
tr := big.NewInt(0)
tr = tr.Mul(q, r1)
tr = tr.Sub(r0, tr)
biCopy(r0, r1)
biCopy(r1, tr)
}
if r0.Cmp(big.NewInt(1)) > 0 {
return nil, CPError{"not invertible"}
}
if t0.Cmp(big.NewInt(0)) < 0 {
t0.Add(t0, n)
}
return t0, nil
}
func RSAGenKey() (*RSAPair, error) {
// Initialize.
e := big.NewInt(3)
d := big.NewInt(0)
n := big.NewInt(0)
// Compute n and d.
for {
// Generate prime p.
p, err := rand.Prime(rand.Reader, 1024)
if err != nil {
return nil, CPError{"unable to generate p"}
}
// Generate prime q.
q, err := rand.Prime(rand.Reader, 1024)
if err != nil {
return nil, CPError{"unable to generate q"}
}
// Calculate n.
n = big.NewInt(0).Mul(p, q)
// Calculate totient.
p1 := big.NewInt(0).Sub(p, big.NewInt(1)) // p-1
q1 := big.NewInt(0).Sub(q, big.NewInt(1)) // q-1
et := big.NewInt(0).Mul(p1, q1) // Totient `et`.
// Calculate private key `d`.
d, err = invmod(e, et)
if err != nil {
continue // Inverse does not does. Try again.
}
break
}
if n.Cmp(big.NewInt(0)) <= 0 {
return nil, CPError{"unable to compute n"}
}
if d.Cmp(big.NewInt(0)) <= 0 {
return nil, CPError{"unable to compute d"}
}
// Make pub key.
pub := new(RSAPub)
pub.e = e
pub.n = biCopy(big.NewInt(0), n)
// Make private key.
prv := new(RSAPrivate)
prv.d = d
prv.n = biCopy(big.NewInt(0), n)
// Make key pair.
pair := new(RSAPair)
pair.Public = pub
pair.Private = prv
return pair, nil
}
func (r *RSAPub) Encrypt(msg []byte) []byte {
// Convert message to big int.
m := big.NewInt(0).SetBytes(msg)
// Encrypt.
c := big.NewInt(0).Exp(m, r.e, r.n)
return c.Bytes()
}
func (r *RSAPub) N() *big.Int {
return r.n
}
func (r *RSAPrivate) Decrypt(cipher []byte) []byte {
// Convert cipher to big int.
c := big.NewInt(0).SetBytes(cipher)
// Decrypt.
m := big.NewInt(0).Exp(c, r.d, r.n)
return m.Bytes()
}
|