summaryrefslogtreecommitdiffstats
path: root/lib/rsa.go
blob: 314e8bb378fa19bf373319a9f8f4a13ca4f33713 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// Copyright © 2021 siddharth ravikumar <s@ricketyspace.net>
// SPDX-License-Identifier: ISC

package lib

import (
	"crypto/rand"
	"errors"
	"math/big"
)

// Represents an RSA key pair.
type RSAPair struct {
	Public  *RSAPub
	Private *RSAPrivate
}

type RSAPub struct {
	e *big.Int
	n *big.Int
}

type RSAPrivate struct {
	d *big.Int
	n *big.Int
}

// Copy b to a.
func biCopy(a, b *big.Int) *big.Int {
	a.SetBytes(b.Bytes())
	if b.Sign() == -1 {
		a.Mul(a, big.NewInt(-1))
	}
	return a
}

func InvMod(a, n *big.Int) (*big.Int, error) {
	// Initialize.
	t0 := big.NewInt(0)
	t1 := big.NewInt(1)
	r0 := biCopy(big.NewInt(0), n)
	r1 := biCopy(big.NewInt(0), a)

	for r1.Cmp(big.NewInt(0)) != 0 {
		q := big.NewInt(0)
		q.Div(r0, r1)

		tt := big.NewInt(0)
		tt = tt.Mul(q, t1)
		tt = tt.Sub(t0, tt)

		biCopy(t0, t1)
		biCopy(t1, tt)

		tr := big.NewInt(0)
		tr = tr.Mul(q, r1)
		tr = tr.Sub(r0, tr)

		biCopy(r0, r1)
		biCopy(r1, tr)
	}

	if r0.Cmp(big.NewInt(1)) > 0 {
		return nil, CPError{"not invertible"}
	}
	if t0.Cmp(big.NewInt(0)) < 0 {
		t0.Add(t0, n)
	}
	return t0, nil
}

// RSAGenKey generates a rsa key pair with N equal to size bits.
func RSAGenKey(size int) (*RSAPair, error) {
	// Initialize.
	e := big.NewInt(3)
	d := big.NewInt(0)
	n := big.NewInt(0)

	// Compute n and d.
	for {
		// Generate prime p.
		p, err := rand.Prime(rand.Reader, size/2)
		if err != nil {
			return nil, CPError{"unable to generate p"}
		}

		// Generate prime q.
		q, err := rand.Prime(rand.Reader, size/2)
		if err != nil {
			return nil, CPError{"unable to generate q"}
		}

		// Calculate n.
		n = big.NewInt(0).Mul(p, q)

		// Calculate totient.
		p1 := big.NewInt(0).Sub(p, big.NewInt(1)) // p-1
		q1 := big.NewInt(0).Sub(q, big.NewInt(1)) // q-1
		et := big.NewInt(0).Mul(p1, q1)           // Totient `et`.

		// Calculate private key `d`.
		d, err = InvMod(e, et)
		if err != nil {
			continue // Inverse does not does. Try again.
		}
		break
	}
	if n.Cmp(big.NewInt(0)) <= 0 {
		return nil, CPError{"unable to compute n"}
	}
	if d.Cmp(big.NewInt(0)) <= 0 {
		return nil, CPError{"unable to compute d"}
	}

	// Make pub key.
	pub := new(RSAPub)
	pub.e = e
	pub.n = biCopy(big.NewInt(0), n)

	// Make private key.
	prv := new(RSAPrivate)
	prv.d = d
	prv.n = biCopy(big.NewInt(0), n)

	// Make key pair.
	pair := new(RSAPair)
	pair.Public = pub
	pair.Private = prv

	return pair, nil
}

func (r *RSAPub) Encrypt(msg []byte) []byte {
	// Convert message to big int.
	m := big.NewInt(0).SetBytes(msg)

	// Encrypt.
	c := big.NewInt(0).Exp(m, r.e, r.n)

	return c.Bytes()
}

func (r *RSAPub) E() *big.Int {
	return r.e
}

func (r *RSAPub) N() *big.Int {
	return r.n
}

func (r *RSAPrivate) Decrypt(cipher []byte) []byte {
	// Convert cipher to big int.
	c := big.NewInt(0).SetBytes(cipher)

	// Decrypt.
	m := big.NewInt(0).Exp(c, r.d, r.n)

	return m.Bytes()
}

// Sign generates a signature for the give data d according to RFC2313
// sections 8 and 10.
//
// https://datatracker.ietf.org/doc/html/rfc2313
func (r *RSAPrivate) Sign(msg []byte) (ed []byte, err error) {
	// Hash message using md4.
	var (
		dgst Md4    = Md4{}
		d    []byte // Data to sign.
	)
	dgst.Init([]uint32{})
	dgst.Message(msg)
	d = dgst.Hash()

	var (
		kn int = r.n.BitLen() / 8 // Size of N in bytes.
		dn int = len(d)           // Length of d.
		pn int = kn - 3 - dn      // Number of padding characters.

		eb []byte   // Encryption block.
		x  *big.Int // Encryption block as an integer.
		y  *big.Int // Signature as an integer.
	)
	if dn > kn-11 {
		err = errors.New("rsa: data len > k-11")
		return
	}

	// Build encryption block.
	eb = []byte{0x00, 0x01}
	for i := 0; i < pn; i++ {
		eb = append(eb, 0xFF)
	}
	eb = append(eb, 0x00)
	eb = append(eb, d...)

	// Convert to big int.
	x = new(big.Int).SetBytes(eb)

	// Sign.
	y = big.NewInt(0).Exp(x, r.d, r.n)

	ed = y.Bytes()
	return
}