summaryrefslogtreecommitdiffstats
path: root/lib/rsa.go
blob: 00d575e104e08bbd616d397e76d4252b77680ef9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// Copyright © 2021 siddharth ravikumar <s@ricketyspace.net>
// SPDX-License-Identifier: ISC

package lib

import (
	"crypto/rand"
	"math/big"
)

type GCDResult struct {
	Gcd *big.Int
	X   *big.Int // Bézout coefficient 'x'
	Y   *big.Int // Bézout coefficient 'y'
}

// Represents an RSA key pair.
type RSAPair struct {
	Public  *RSAPub
	Private *RSAPrivate
}

type RSAPub struct {
	e *big.Int
	n *big.Int
}

type RSAPrivate struct {
	d *big.Int
	n *big.Int
}

// Copy b to a.
func biCopy(a, b *big.Int) *big.Int {
	a.SetBytes(b.Bytes())
	if b.Sign() == -1 {
		a.Mul(a, big.NewInt(-1))
	}
	return a
}

// Extended Euclidian.
func egcd(a, b *big.Int) GCDResult {
	// Initialize.
	s0 := big.NewInt(1)
	s1 := big.NewInt(0)
	r0 := biCopy(big.NewInt(0), a)
	r1 := biCopy(big.NewInt(0), b)

	for r1.Cmp(big.NewInt(0)) != 0 {
		q := big.NewInt(0)
		q.Div(r0, r1)

		tr := big.NewInt(0)
		tr = tr.Mul(q, r1)
		tr = tr.Sub(r0, tr)

		biCopy(r0, r1)
		biCopy(r1, tr)

		tr = big.NewInt(0)
		tr = tr.Mul(q, s1)
		tr = tr.Sub(s0, tr)

		biCopy(s0, s1)
		biCopy(s1, tr)
	}

	x := biCopy(big.NewInt(0), s0)
	y := big.NewInt(0)
	if b.Cmp(big.NewInt(0)) != 0 {
		y = y.Mul(s0, a)
		y = y.Sub(r0, y)
		y = y.Div(y, b)
	}

	return GCDResult{
		Gcd: biCopy(big.NewInt(0), r0),
		X:   x,
		Y:   y,
	}
}

func invmod(a, n *big.Int) (*big.Int, error) {
	// Initialize.
	t0 := big.NewInt(0)
	t1 := big.NewInt(1)
	r0 := biCopy(big.NewInt(0), n)
	r1 := biCopy(big.NewInt(0), a)

	for r1.Cmp(big.NewInt(0)) != 0 {
		q := big.NewInt(0)
		q.Div(r0, r1)

		tt := big.NewInt(0)
		tt = tt.Mul(q, t1)
		tt = tt.Sub(t0, tt)

		biCopy(t0, t1)
		biCopy(t1, tt)

		tr := big.NewInt(0)
		tr = tr.Mul(q, r1)
		tr = tr.Sub(r0, tr)

		biCopy(r0, r1)
		biCopy(r1, tr)
	}

	if r0.Cmp(big.NewInt(1)) > 0 {
		return nil, CPError{"not invertible"}
	}
	if t0.Cmp(big.NewInt(0)) < 0 {
		t0.Add(t0, n)
	}
	return t0, nil
}

func RSAGenKey() (*RSAPair, error) {
	// Initialize.
	e := big.NewInt(3)
	d := big.NewInt(0)
	n := big.NewInt(0)

	// Compute n and d.
	for {
		// Generate prime p.
		p, err := rand.Prime(rand.Reader, 1024)
		if err != nil {
			return nil, CPError{"unable to generate p"}
		}

		// Generate prime q.
		q, err := rand.Prime(rand.Reader, 1024)
		if err != nil {
			return nil, CPError{"unable to generate q"}
		}

		// Calculate n.
		n = big.NewInt(0).Mul(p, q)

		// Calculate totient.
		p1 := big.NewInt(0).Sub(p, big.NewInt(1)) // p-1
		q1 := big.NewInt(0).Sub(q, big.NewInt(1)) // q-1
		et := big.NewInt(0).Mul(p1, q1)           // Totient `et`.

		// Calculate private key `d`.
		d, err = invmod(e, et)
		if err != nil {
			continue // Inverse does not does. Try again.
		}
		break
	}
	if n.Cmp(big.NewInt(0)) <= 0 {
		return nil, CPError{"unable to compute n"}
	}
	if d.Cmp(big.NewInt(0)) <= 0 {
		return nil, CPError{"unable to compute d"}
	}

	// Make pub key.
	pub := new(RSAPub)
	pub.e = e
	pub.n = biCopy(big.NewInt(0), n)

	// Make private key.
	prv := new(RSAPrivate)
	prv.d = d
	prv.n = biCopy(big.NewInt(0), n)

	// Make key pair.
	pair := new(RSAPair)
	pair.Public = pub
	pair.Private = prv

	return pair, nil
}

func (r *RSAPub) Encrypt(msg []byte) []byte {
	// Convert message to big int.
	m := big.NewInt(0).SetBytes(msg)

	// Encrypt.
	c := big.NewInt(0).Exp(m, r.e, r.n)

	return c.Bytes()
}