summaryrefslogtreecommitdiffstats
path: root/sicp.org
blob: 5a65957bacf03b401021cbcf4d776bab07953ddc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
* notes
** 1
*** 1
**** 5
#+BEGIN_QUOTE
In general, when modeling phenomena in science and engineering, we
begin with simplified, incomplete models. As we examine things in
greater detail, these simple models become inadequate and must be
replaced by more refined models.
#+END_QUOTE
*** 2
**** 6
***** The Fermat Test

#+BEGIN_EXAMPLE
(expmod 2 5 5)
(remainder (* 2 (expmod 2 4 5)) 5)
(remainder (* 2 (remainder (square (expmod 2 2 5)) 5)) 5)
(remainder (* 2 (remainder (square (remainder (square (expmod 2 1 5))
                                              5)) 5)) 5)
(remainder (* 2 (remainder (square (remainder
                                        (square (remainder
                                                          (* 2 (expmod
                                                                     2
                                                                     0
                                                                     5))
                                                          5)) 5)) 5)) 5)
(remainder (* 2 (remainder (square (remainder
                                        (square (remainder
                                                          (* 2 1) 5))
                                         5)) 5)) 5)
(remainder (* 2 (remainder (square (remainder (square (remainder 2 5))
                                              5)) 5)) 5)
(remainder (* 2 (remainder (square (remainder (square 2) 5)) 5)) 5)
(remainder (* 2 (remainder (square (remainder 4 5)) 5)) 5)
(remainder (* 2 (remainder (square 4) 5)) 5)
(remainder (* 2 (remainder 16 5)) 5)
(remainder (* 2 1) 5)
(remainder 2 5)
2
#+END_EXAMPLE

#+BEGIN_EXAMPLE
(expmod 2 6 6)
(remainder (square (expmod 2 3 6) 6))
(remainder (square (remainder (* 2 (expmod 2 2 6)) 6)) 6)
(remainder (square (remainder (* 2 (remainder (square (expmod 2 1 6))
                                              6)) 6)) 6)
(remainder (square (remainder (* 2 (remainder
                                       (square (remainder
                                                   (* 2 (expmod 2 0 6))
                                                   6)) 6)) 6)) 6)
(remainder (square (remainder (* 2 (remainder
                                       (square (remainder (* 2 1) 6))
                                       6)) 6)) 6)
(remainder (square (remainder (* 2 (remainder (square (remainder 2 6))
                                              6)) 6)) 6)
(remainder (square (remainder (* 2 (remainder (square (remainder 2 6))
                                              6)) 6)) 6)
(remainder (square (remainder (* 2 (remainder (square 2) 6)) 6)) 6)
(remainder (square (remainder (* 2 (remainder 4 6)) 6)) 6)
(remainder (square (remainder (* 2 4) 6)) 6)
(remainder (square (remainder 8 6)) 6)
(remainder (square 2) 6)
(remainder 4 6)
4
#+END_EXAMPLE

** guile
*** use module
    #+BEGIN_SRC scheme
    (use-modules (some thing))
    #+END_SRC
** exercises
*** 1
**** 4

     #+BEGIN_SRC scheme
     (define (a-plus-abs-b a b)
       ((if (> b 0) + -) a b))
     #+END_SRC

 If ~b~ is greater than 0, do ~a + b~; otherwise do ~a - b~.
**** 5

 code at [[./one/five.scm]]

 If the interpreter uses *applicative order* to evaluate the
 expression:

 #+BEGIN_SRC scheme
 (test 0 (p))
 #+END_SRC

 The parameters are evaluated before applying the compound procedure
 ~test~; 0 evaluates to 0, ~(p)~ never finishes evaluating as the
 compound procedure ~p~ recursively calls itself again and again
 infinitely.

 If same expression is evaluated by the interpreter using *normal
 order*, the expression will be expanded to

 #+BEGIN_SRC scheme
   (if (= 0 0)
       0
       (p)))
 #+END_SRC

 and will evaluate to ~0~.
**** 6
     If I've understood it correctly, scheme uses applicative-order
     evaluation, meaning, it evaluates the operands before appling the
     procedure.

     In the case when ~new-if~ used in the ~sqrt-iter~ procedure, the
     operands/arguments for the ~new-if~ -- ~(good-enough? guess x)~,
     ~guess~, ~(sqrt-iter (improve guess x) x)~ -- are evaluated. Due
     to the last operand, which is a call to the ~sqrt-iter~ procedure,
     we get into infinite loop of evaluating the ~sqrt-iter~ procedure
     again and again.
**** 7

 The following list show the tolerance value and the corresponding
 square root of 0.1 computed with that tolerance value.

 #+BEGIN_EXAMPLE
 ((0.001 . 0.316245562280389)
 (1.0e-4 . 0.316245562280389)
 (1.0e-5 . 0.31622776651756745)
 (1.0000000000000002e-6 . 0.31622776651756745)
 (1.0000000000000002e-7 . 0.31622776651756745)
 (1.0000000000000002e-8 . 0.31622776651756745)
 (1.0000000000000003e-9 . 0.31622776651756745)
 1.0000000000000003e-10 . 0.31622776601683794)
 #+END_EXAMPLE

 Guile's =sqrt= function says the square root of 0.1 is
 0.31622776601683794:
 #+BEGIN_SRC scheme
 scheme@(guile-user)> (sqrt 0.1)
 $7 = 0.31622776601683794
 #+END_SRC

 From above, it can be observed that the only when the tolerance value
 for the =good-enough?= function is ~1.0e-10, does the square root of
 0.1 produced by our custom square root function matches the value
 produced by Guile's =sqrt= function.

 If the =good-enough?= is changed such that it returns =true= if the
 difference between the present guess and the previous guess is less
 than or equal to 0.001, the sqrt function yields 0.31622776651756745
 for sqrt(0.1).

 #+BEGIN_SRC scheme
 scheme@(guile-user)> (sqrt-sicp-alt 0.1)
 $9 = 0.31622776651756745
 #+END_SRC

 0.31622776651756745 is more precise than 0.316245562280389 (the answer
 returned by the custom sqrt function that uses the ol' =good-enough=
 function) but not as precise as the answer returned by the guile's
 sqrt function.

 For a number as large as 1000000000, guile's =sqrt= function and
 =sqrt-sicp-alt= returns 31622.776601683792, =sqrt-sicp= returns
 31622.776601684047; =sqrt-sicp= being slightly more precise than the
 other functions.
**** 9
***** recursive process

 #+BEGIN_SRC scheme
 (define (+ a b)
   (if (= a 0)
       b
       (inc (+ dec a) b)))
 #+END_SRC

 #+BEGIN_SRC
 (+ 4 5)    ----+
 (inc (+ 3 5))  |----+
 (inc (inc (+ 2 5))) |------+
 (inc (inc (inc (+ 1 5))))  |------+
 (inc (inc (inc (inc (+ 0 5)))))   |
 (inc (inc (inc (inc 5)))) +-------+
 (inc (inc (inc 6))) +-----|
 (inc (inc 7)) +-----|
 (inc 8) +-----|
 9 <-----|
 #+END_SRC

***** iterative process

 #+BEGIN_SRC scheme
 (define (+ a b)
   (if (= a 0)
       b
       (+ (dec a) (inc b))))
 #+END_SRC

 #+BEGIN_SRC
 (+ 4 5 --+
 (+ 3 6)  |
 (+ 2 7)  |
 (+ 1 8)  |
 (+ 0 9)  |
 9 <------+
 #+END_SRC
**** 10
 #+BEGIN_SRC scheme
 (define (A x y)
   (cond ((= y 0) 0)
         ((= x 0) (* 2 y))
         ((= y 1) 2)
         (else (A (- x 1)
                  (A x (- y 1))))))
 #+END_SRC

***** (A 1 10) = 2^y

 #+BEGIN_SRC scheme
 (A 1 10)
 (A 0 (A 1 9))
 (A 0 (A 0 (A 1 8)))
 (A 0 (A 0 (A 0 (A 1 7))))
 (A 0 (A 0 (A 0 (A 0 (A 1 6)))))
 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 5))))))
 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 4)))))))
 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 3))))))))
 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 2)))))))))
 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 1))))))))))
 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 2)))))))))
 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 4))))))))
 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 8)))))))
 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 16))))))
 (A 0 (A 0 (A 0 (A 0 (A 0 32)))))
 (A 0 (A 0 (A 0 (A 0 64))))
 (A 0 (A 0 (A 0 128)))
 (A 0 (A 0 256))
 (A 0 512)
 1024
 #+END_SRC

 At this point, I'm guessing function ~A = 2^xy~.

 After some thinking, I don't think it is ~A = 2^xy~. I'm guessing it
 is ~A = 2x2^y~.

***** (A 2 4)
 #+BEGIN_SRC scheme
 (A 2 4)
 (A 1 (A 2 3))
 (A 1 (A 1 (A 2 2)))
 (A 1 (A 1 (A 1 (A 2 1))))
 (A 1 (A 1 (A 1 2)))
 (A 1 (A 1 (A 0 (A 1 1))))
 (A 1 (A 1 (A 0 2)))
 (A 1 (A 1 4))
 (A 1 (A 0 (A 1 3)))
 (A 1 (A 0 (A 0 (A 1 2))))
 (A 1 (A 0 (A 0 (A 0 (A 1 1)))))
 (A 1 (A 0 (A 0 (A 0 2))))
 (A 1 (A 0 (A 0 4)))
 (A 1 (A 0 8))
 (A 1 16)
 2^16 = (expt 2 16) =  65536
 #+END_SRC

***** (A 3 3)
 #+BEGIN_SRC scheme
 (A 3 3)
 (A 2 (A 3 2))
 (A 2 (A 2 (A 3 1)))
 (A 2 (A 2 2))
 (A 2 (A 1 (A 2 1)))
 (A 2 (A 1 2))
 (A 2 (A 0 (A 1 1)))
 (A 2 (A 0 2))
 (A 2 4)
 (A 1 (A 2 3))
 (A 1 (A 1 (A 2 2)))
 (A 1 (A 1 (A 1 (A 2 1))))
 (A 1 (A 1 (A 1 2)))
 (A 1 (A 1 (A 0 (A 1 1))))
 (A 1 (A 1 (A 0 2)))
 (A 1 (A 1 4))
 (A 1 (A 0 (A 1 3)))
 (A 1 (A 0 (A 0 (A 1 2))))
 (A 1 (A 0 (A 0 (A 0 (A 1 1)))))
 (A 1 (A 0 (A 0 (A 0 2))))
 (A 1 (A 0 (A 0 4)))
 (A 1 (A 0 8))
 (A 1 16)
 2^16 = (expt 2 16) =  65536
 #+END_SRC

***** (A 2 5)

 #+BEGIN_SRC scheme
 (A 2 5)
 (A 1 (A 2 4))
 (A 1 (A 1 (A 2 3)))
 (A 1 (A 1 (A 1 (A 2 2))))
 (A 1 (A 1 (A 1 (A 1 (A 2 1)))))
 (A 1 (A 1 (A 1 (A 1 2))))
 (A 1 (A 1 (A 1 (A 0 (A 1 1)))))
 (A 1 (A 1 (A 1 (A 0 2))))
 (A 1 (A 1 (A 1 4)))
 (A 1 (A 1 16))
 (A 1 65536)
 2^65536
 #+END_SRC

***** (A 2 6)

 #+BEGIN_SRC scheme
 (A 2 6)
 (A 1 (A 2 5))
 (A 1 (A 1 (A 2 4)))
 (A 1 (A 1 (A 1 (A 2 3))))
 (A 1 (A 1 (A 1 (A 1 (A 2 2)))))
 (A 1 (A 1 (A 1 (A 1 (A 1 (A 2 1))))))
 (A 1 (A 1 (A 1 (A 1 (A 1 2)))))
 (A 1 (A 1 (A 1 (A 1 4))))
 (A 1 (A 1 (A 1 16)))
 (A 1 (A 1 65536))
 (A 1 2^65536)
 2^(2^65536)
 #+END_SRC
***** mathematical definitions for
****** (define (f n) (A 0 n))
 =(f n)= computes  =(* 2 n)=
****** (define (g n) (A 1 n))
 =(g n)= computes  =(expt 2 n)=
****** (define (h n) (A 2 n))
 =(h n)= computes  =(expt 2 (h (1- n)))=
****** (define (k n) (* 5 n n))
 =(k n)= computes  =(* 5 n n)=
**** 11
 I could not come up with a an iterative procedure.

 two versions of the recursive procedure are available at
 one/eleven.scm.
**** 12

 #+BEGIN_SRC
               1
              1 1
             1 2 1
            1 3 3 1
           1 4 6 4 1
          1 5 10 10 5 1
         1   6 15 20 15 6 1
	1 7   21  35  35  21  7  1
       1   8   28  56  70  56  28 8 1
      1  9  36  84  126 126 84  36 9 1
     1 10 45 120 210 252 210 120 45 10 1
    1 11 55 165 330 462 462 330 165 55  11  1
    1  12  66   220  495  792  924  792  495  220 66 12 1
  1  13 78  286  715  1287 1716 1716 1287 715  286 78 13 1
 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
 #+END_SRC
**** 20

 #+BEGIN_SRC scheme
 (define (gcd a b)
   (if (= b 0)
       a
       (gcd b (remainder a b))))
 #+END_SRC


 #+BEGIN_EXAMPLE
 normal order - no. of calls to remainder - 14
 applicative order - no. of calls to remainder - 4
 #+END_EXAMPLE

 #+BEGIN_EXAMPLE
 normal order
 (gcd 206 40)

  (= (= 40 0)) # #f

 (gcd 40 (remainder 206 40))

  ;; 1 call here.
  (= (remainder 206 40) 0)
  (= (6 0))

 (gcd (remainder 206 40) (remainder 40 (remainder 206 40)))

  ;; 2 calls here.
  (= (remainder 40 (remainder 206 40)) 0)
  (= (remainder 40 6) 0)
  (= 4 0)

 (gcd (remainder 40 (remainder 206 40))
      (remainder (remainder 206 40)
                 (remainder 40 (remainder 206 40))))

  ;; 4 calls here.
  (= (remainder (remainder 206 40)
		(remainder 40 (remainder 206 40))) 0)
  (= (remainder (remainder 206 40)
		(remainder 40 6)) 0)
  (= (remainder 6 4) 0)
  (= 2 0)

 (gcd (remainder (remainder 206 40)
                 (remainder 40 (remainder 206 40)))
      (remainder (remainder 40 (remainder 206 40))
                 (remainder (remainder 206 40)
                            (remainder 40 (remainder 206 40)))))

  ;; 7 calls here.
  (= (remainder (remainder 40 (remainder 206 40))
                 (remainder (remainder 206 40)
                            (remainder 40 (remainder 206 40)))) 0)
  (= (remainder (remainder 40 (remainder 206 40))
		(remainder (remainder 206 40)
                           (remainder 40 6))) 0)
  (= (remainder (remainder 40 (remainder 206 40))
		(remainder (remainder 206 40)
                           4)) 0)
  (= (remainder (remainder 40 (remainder 206 40))
		(remainder 6
                           4)) 0)
  (= (remainder (remainder 40 (remainder 206 40))
		2) 0)
  (= (remainder (remainder 40 6)
		2) 0)
  (= (remainder 4
		2) 0)
  (= 0 0)

 ;; 4 calls here.
 (remainder (remainder 206 40)
            (remainder 40 (remainder 206 40)))
 (remainder (remainder 206 40)
            (remainder 40 6))
 (remainder (remainder 206 40)
            (remainder 40 6))
 (remainder (remainder 206 40)
            4)
 (remainder 6
            4)
 2 ; (+ 1 2 4 7 4) => 14 calls in total.
 #+END_EXAMPLE

 #+BEGIN_EXAMPLE
 applicative order
 (gcd 206 40)
 (gcd 40 (remainder 206 40))
 (gcd 40 6)
 (gcd 6 (remainder 40 6))
 (gcd 6 4)
 (gcd 4 (remainder 6 4))
 (gcd 4 2)
 (gcd 2 (remainder 4 2))
 (gcd 2 0)
 2
 #+END_EXAMPLE
*** 2
**** 22
 #+BEGIN_SRC scheme
 (cons ... (cons (cons LIST NUMBER²) NUMBER²) NUMBER²)
 #+END_SRC

 creates a list with the squared numbers in a messy nested list like:

 #+BEGIN_SRC scheme
 (square-list '(1 2 3 4 5))
 ;; $3 = (((((() . 1) . 4) . 9) . 16) . 25)
 #+END_SRC
**** 24
 #+BEGIN_EXAMPLE
 (1 (2 (3 4)))


    +----+----+      +----+----+      +----+----+      +----+----+
    | o  | o--|----->| o  | o--|----->| o  | o--|----->| o  | /  |
    +----+----+      +----+----+      +----+----+      +----+----+
      |                |                |                |
      |                |                |                |
      v                v                v                v
    +----+           +----+           +----+           +----+
    | 1  |           | 2  |           | 3  |           | 4  |
    +----+           +----+           +----+           +----+


                               (1 (2 (3 4)))
                               o
                              / \
                             /   \
                            /     \
                           /       \
                          /         \
                         1           \
                                      \  (2 (3 4))
                                       o
                                      / \
                                     /   \
                                    /     \
                                   /       \
                                  /         \
                                 /           \
				2             \
                                               \ (3 4)
						o
                                               / \
                                              /   \
                                             /     \
                                            /       \
                                           /         \
                                          /           \
                                         3             4
 #+END_EXAMPLE
**** 25
 #+BEGIN_SRC scheme
 (define one '(1 3 (5 7) 9))

 (car (cdr (car (cdr (cdr one)))))
 #+END_SRC
 #+BEGIN_SRC scheme
 (define two '((7)))

 (car (car two))
 #+END_SRC
 #+BEGIN_SRC scheme
 (define three '(1 (2 (3 (4 (5 (6 7)))))))

 (car (cdr (car (cdr (car (cdr (car (cdr (car (cdr (car (cdr three))))))))))))
 #+END_SRC
**** 26
 #+BEGIN_SRC scheme
 (define x (list 1 2 3))
 (define y (list 4 5 6))

 (append x y)
 '(1 2 3 4 5 6)

 (cons x y)
 '((1 2 3) (4 5 6))

 (list x y)
 '((1 2 3) (4 5 6))
 #+END_SRC
**** 29
***** d
 Everything needs to be changed!

 Initially, for =make-mobile=, it used be:

 #+BEGIN_SRC scheme
 scheme@(guile-user)> (make-mobile (make-branch 5 50) (make-branch 5 50))
 $37 = ((5 50) (5 50))
 #+END_SRC

 Now (using =cons= instead of =list=) it is:
 #+BEGIN_SRC scheme
 scheme@(guile-user)> (make-mobile (make-branch 5 50) (make-branch 5 50))
 $58 = ((5 . 50) 5 . 50)
 #+END_SRC

 Initially, for =make-branch=, it used be:

 #+BEGIN_SRC scheme
 scheme@(guile-user)> (make-branch 5 (make-mobile (make-branch 3 50) (make-branch 3 50)))
 $61 = (5 ((3 50) (3 50)))
 #+END_SRC

 Now (using =cons= instead of =list=) it is:

 #+BEGIN_SRC scheme
 scheme@(guile-user)> (make-branch 5 (make-mobile (make-branch 3 50) (make-branch 3 50)))
 $60 = (5 (3 . 50) 3 . 50)
 #+END_SRC
**** 43
     I'll measure the the time taken for function ~queens~ to complete
     by calculating the number of times ~queen-cols~ gets called.

     First, I'm going to see how many times ~queen-cols~ gets called
     for the original version of ~queens~ with ~board-size=8~

     #+begin_example
      board-size = 8 ; k = 8  -> 1 * (queen-cols 7)
                     ; k = 7  -> 1 * (queen-cols 6)
                     ; k = 6  -> 1 * (queen-cols 5)
                     ; k = 5  -> 1 * (queen-cols 4)
                     ; k = 4  -> 1 * (queen-cols 3)
                     ; k = 3  -> 1 * (queen-cols 2)
                     ; k = 2  -> 1 * (queen-cols 1)
                     ; k = 1  -> 1 * (queen-cols 0)
                     ; k = 0  -> 0
     #+end_example

     ~queen-cols~ gets called 8 times when ~board-size~ is 8

     To generalize it ~queen-cols~ gets called B times when the
     ~board-size~ is B.

     Next, I'm going to see how many times ~queen-cols~ gets called for
     Louis Reasoner's version of the of ~queens~

     #+begin_example
      board-size = 8 ; k = 8 -> 8 * (queen-cols 7)
                     ;              k = 7 -> 8 * (queen-cols 6)
                     ;                           k = 6 -> 8 * (queen-cols 5)
                     ;                                        k = 5 -> 8 * (queen-cols 4)
                     ;                                                     k = 4 -> 8 * (queen-cols 3)
                     ;                                                                   k = 3 -> 8 * (queen-cols 2)
                     ;                                                                                k = 2 -> 8 * (queen-cols 1)
                     ;                                                                                              k = 1 -> 8 * (queen-cols 0)
                     ;                                                                                                           k = 0 -> 0 
     #+end_example

     Here, the ~queen-cols~ is getting called ~8^8~ times or ~B^B~
     times when the ~board-size is B.

     From above, if the original version of ~queens~ took time ~T~,
     then Louis's version will take ~T^T~ to finish.
**** 49
***** util
#+begin_src elisp
(defun sr/painter-frame-coord (x y)
   (list (/ x 500.0) (/ y 500.00)))
#+end_src