1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
* notes
** 1
*** 1
**** 5
#+BEGIN_QUOTE
In general, when modeling phenomena in science and engineering, we
begin with simplified, incomplete models. As we examine things in
greater detail, these simple models become inadequate and must be
replaced by more refined models.
#+END_QUOTE
** guile
*** use module
#+BEGIN_SRC scheme
(use-modules (some thing))
#+END_SRC
* exercises
** 1
*** 4
#+BEGIN_SRC scheme
(define (a-plus-abs-b a b)
((if (> b 0) + -) a b))
#+END_SRC
If ~b~ is greater than 0, do ~a + b~; otherwise do ~a - b~.
*** 5
code at [[./one/five.scm]]
If the interpreter uses *applicative order* to evaluate the
expression:
#+BEGIN_SRC scheme
(test 0 (p))
#+END_SRC
The parameters are evaluated before applying the compound procedure
~test~; 0 evaluates to 0, ~(p)~ never finishes evaluating as the
compound procedure ~p~ recursively calls itself again and again
infinitely.
If same expression is evaluated by the interpreter using *normal
order*, the expression will be expanded to
#+BEGIN_SRC scheme
(if (= 0 0)
0
(p)))
#+END_SRC
and will evaluate to ~0~.
*** 6
If I've understood it correctly, scheme uses applicative-order
evaluation, meaning, it evaluates the operands before appling the
procedure.
In the case when ~new-if~ used in the ~sqrt-iter~ procedure, the
operands/arguments for the ~new-if~ -- ~(good-enough? guess x)~,
~guess~, ~(sqrt-iter (improve guess x) x)~ -- are evaluated. Due
to the last operand, which is a call to the ~sqrt-iter~ procedure,
we get into infinite loop of evaluating the ~sqrt-iter~ procedure
again and again.
*** 7
The following list show the tolerance value and the corresponding
square root of 0.1 computed with that tolerance value.
#+BEGIN_EXAMPLE
((0.001 . 0.316245562280389)
(1.0e-4 . 0.316245562280389)
(1.0e-5 . 0.31622776651756745)
(1.0000000000000002e-6 . 0.31622776651756745)
(1.0000000000000002e-7 . 0.31622776651756745)
(1.0000000000000002e-8 . 0.31622776651756745)
(1.0000000000000003e-9 . 0.31622776651756745)
1.0000000000000003e-10 . 0.31622776601683794)
#+END_EXAMPLE
Guile's =sqrt= function says the square root of 0.1 is
0.31622776601683794:
#+BEGIN_SRC scheme
scheme@(guile-user)> (sqrt 0.1)
$7 = 0.31622776601683794
#+END_SRC
From above, it can be observed that the only when the tolerance value
for the =good-enough?= function is ~1.0e-10, does the square root of
0.1 produced by our custom square root function matches the value
produced by Guile's =sqrt= function.
If the =good-enough?= is changed such that it returns =true= if the
difference between the present guess and the previous guess is less
than or equal to 0.001, the sqrt function yields 0.31622776651756745
for sqrt(0.1).
#+BEGIN_SRC scheme
scheme@(guile-user)> (sqrt-sicp-alt 0.1)
$9 = 0.31622776651756745
#+END_SRC
0.31622776651756745 is more precise than 0.316245562280389 (the answer
returned by the custom sqrt function that uses the ol' =good-enough=
function) but not as precise as the answer returned by the guile's
sqrt function.
For a number as large as 1000000000, guile's =sqrt= function and
=sqrt-sicp-alt= returns 31622.776601683792, =sqrt-sicp= returns
31622.776601684047; =sqrt-sicp= being slightly more precise than the
other functions.
*** 9
**** recursive process
#+BEGIN_SRC scheme
(define (+ a b)
(if (= a 0)
b
(inc (+ dec a) b)))
#+END_SRC
#+BEGIN_SRC
(+ 4 5) ----+
(inc (+ 3 5)) |----+
(inc (inc (+ 2 5))) |------+
(inc (inc (inc (+ 1 5)))) |------+
(inc (inc (inc (inc (+ 0 5))))) |
(inc (inc (inc (inc 5)))) +-------+
(inc (inc (inc 6))) +-----|
(inc (inc 7)) +-----|
(inc 8) +-----|
9 <-----|
#+END_SRC
**** iterative process
#+BEGIN_SRC scheme
(define (+ a b)
(if (= a 0)
b
(+ (dec a) (inc b))))
#+END_SRC
#+BEGIN_SRC
(+ 4 5 --+
(+ 3 6) |
(+ 2 7) |
(+ 1 8) |
(+ 0 9) |
9 <------+
#+END_SRC
*** 10
#+BEGIN_SRC scheme
(define (A x y)
(cond ((= y 0) 0)
((= x 0) (* 2 y))
((= y 1) 2)
(else (A (- x 1)
(A x (- y 1))))))
#+END_SRC
**** (A 1 10) = 2^y
#+BEGIN_SRC scheme
(A 1 10)
(A 0 (A 1 9))
(A 0 (A 0 (A 1 8)))
(A 0 (A 0 (A 0 (A 1 7))))
(A 0 (A 0 (A 0 (A 0 (A 1 6)))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 1 5))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 4)))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 3))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 2)))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 1 1))))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 2)))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 4))))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 (A 0 8)))))))
(A 0 (A 0 (A 0 (A 0 (A 0 (A 0 16))))))
(A 0 (A 0 (A 0 (A 0 (A 0 32)))))
(A 0 (A 0 (A 0 (A 0 64))))
(A 0 (A 0 (A 0 128)))
(A 0 (A 0 256))
(A 0 512)
1024
#+END_SRC
At this point, I'm guessing function ~A = 2^xy~.
After some thinking, I don't think it is ~A = 2^xy~. I'm guessing it
is ~A = 2x2^y~.
**** (A 2 4)
#+BEGIN_SRC scheme
(A 2 4)
(A 1 (A 2 3))
(A 1 (A 1 (A 2 2)))
(A 1 (A 1 (A 1 (A 2 1))))
(A 1 (A 1 (A 1 2)))
(A 1 (A 1 (A 0 (A 1 1))))
(A 1 (A 1 (A 0 2)))
(A 1 (A 1 4))
(A 1 (A 0 (A 1 3)))
(A 1 (A 0 (A 0 (A 1 2))))
(A 1 (A 0 (A 0 (A 0 (A 1 1)))))
(A 1 (A 0 (A 0 (A 0 2))))
(A 1 (A 0 (A 0 4)))
(A 1 (A 0 8))
(A 1 16)
2^16 = (expt 2 16) = 65536
#+END_SRC
**** (A 3 3)
#+BEGIN_SRC scheme
(A 3 3)
(A 2 (A 3 2))
(A 2 (A 2 (A 3 1)))
(A 2 (A 2 2))
(A 2 (A 1 (A 2 1)))
(A 2 (A 1 2))
(A 2 (A 0 (A 1 1)))
(A 2 (A 0 2))
(A 2 4)
(A 1 (A 2 3))
(A 1 (A 1 (A 2 2)))
(A 1 (A 1 (A 1 (A 2 1))))
(A 1 (A 1 (A 1 2)))
(A 1 (A 1 (A 0 (A 1 1))))
(A 1 (A 1 (A 0 2)))
(A 1 (A 1 4))
(A 1 (A 0 (A 1 3)))
(A 1 (A 0 (A 0 (A 1 2))))
(A 1 (A 0 (A 0 (A 0 (A 1 1)))))
(A 1 (A 0 (A 0 (A 0 2))))
(A 1 (A 0 (A 0 4)))
(A 1 (A 0 8))
(A 1 16)
2^16 = (expt 2 16) = 65536
#+END_SRC
**** (A 2 5)
#+BEGIN_SRC scheme
(A 2 5)
(A 1 (A 2 4))
(A 1 (A 1 (A 2 3)))
(A 1 (A 1 (A 1 (A 2 2))))
(A 1 (A 1 (A 1 (A 1 (A 2 1)))))
(A 1 (A 1 (A 1 (A 1 2))))
(A 1 (A 1 (A 1 (A 0 (A 1 1)))))
(A 1 (A 1 (A 1 (A 0 2))))
(A 1 (A 1 (A 1 4)))
(A 1 (A 1 16))
(A 1 65536)
2^65536
#+END_SRC
**** (A 2 6)
#+BEGIN_SRC scheme
(A 2 6)
(A 1 (A 2 5))
(A 1 (A 1 (A 2 4)))
(A 1 (A 1 (A 1 (A 2 3))))
(A 1 (A 1 (A 1 (A 1 (A 2 2)))))
(A 1 (A 1 (A 1 (A 1 (A 1 (A 2 1))))))
(A 1 (A 1 (A 1 (A 1 (A 1 2)))))
(A 1 (A 1 (A 1 (A 1 4))))
(A 1 (A 1 (A 1 16)))
(A 1 (A 1 65536))
(A 1 2^65536)
2^(2^65536)
#+END_SRC
**** mathematical definitions for
***** (define (f n) (A 0 n))
=(f n)= computes =(* 2 n)=
***** (define (g n) (A 1 n))
=(g n)= computes =(expt 2 n)=
***** (define (h n) (A 2 n))
=(h n)= computes =(expt 2 (h (1- n)))=
***** (define (k n) (* 5 n n))
=(k n)= computes =(* 5 n n)=
*** 11
I could not come up with a an iterative procedure.
two versions of the recursive procedure are available at
one/eleven.scm.
*** 12
#+BEGIN_SRC
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1
1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1
1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
#+END_SRC
|